
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

GraphDecoder: Recovering Diverse Network
Graphs from Visualization Images via

Attention-Aware Learning
Sicheng Song, Chenhui Li, Dong Li, Juntong Chen, and Changbo Wang

Abstract—DNGs are diverse network graphs with texts and different styles of nodes and edges, including mind maps, modeling
graphs, and flowcharts. They are high-level visualizations that are easy for humans to understand but difficult for machines. Inspired
by the process of human perception of graphs, we propose a method called GraphDecoder to extract data from raster images. Given
a raster image, we extract the content based on a neural network. We built a semantic segmentation network based on U-Net. We
increase the attention mechanism module, simplify the network model, and design a specific loss function to improve the model’s
ability to extract graph data. After this semantic segmentation network, we can extract the data of all nodes and edges. We then
combine these data to obtain the topological relationship of the entire DNG. We also provide an interactive interface for users to
redesign the DNGs. We verify the effectiveness of our method by evaluations and user studies on datasets collected on the internet
and generated datasets.

Index Terms—Information visualization, Chart mining, Semantic segmentation, Network graph, Attention mechanism

✦

1 INTRODUCTION

DNGS (diverse network graphs) are common visual-
izations in various applications. They have differ-

ent styles of nodes and edges than the general definition
of node-link graphs [1]. Their nodes can be hollow, may
contain text, and exhibit various shapes. Their edges
can be curves and polylines instead of straight lines
only. DNGs contain node-link graphs, flowcharts [2], E-
R diagrams [3], and mind maps [4]. Fig. 1 shows exam-
ples of DNGs. People often try to modify these DNGs
because of poor design or outdated data. However, most
visualizations are stored in the form of raster images and
released on various media [5]. Moreover, in the visual-
ization pipeline, designers often draw sketches on paper
before the visualization is formally drawn [1]. If users
can convert sketches into visualizations, productivity
can be increased. In these scenarios, the core problem
is to extract the original data of graph visualizations.
Obtaining original data is a complicated task that has
become an important study of visualization [6].

There are already some existing methods to solve
the problem of obtaining original data. Some previous
studies [7, 8] used steganography to write original data
into images, but this method hides the data in the image:
the data cannot reproduce the original data from the ex-
isting chart image without a steganography model. The
most common method is chart data extraction, including

• The authors are with the School of Computer Science and Technology,
East China Normal University, Shanghai 200062, China. E-mail: {scsong,
dongli, jtchen}@stu.ecnu.edu.cn, {chli, cbwang}@cs.ecnu.edu.cn.
This work was supported by the NSFC under Grant 62072183.
(Corresponding authors: Chenhui Li and Changbo Wang.)

image processing [9] and machine learning [10]. Chart
extraction focuses on extracting the original data from
the raster image of the chart. At present, data extraction
approaches for basic charts such as bar [11, 12] and
pie charts [13, 14] are mature. There are also some
methods [15, 16] to support line charts, but they are not
robust enough against multiple lines or dotted lines. It
is difficult to detect lines in the chart. OGR [17] first pro-
posed using morphological methods for the extraction
of network graphs. However, morphological methods
need to constantly adjust the threshold of binarization.
In addition, such methods can only extract solid circular
nodes and cannot solve graphs with text. OGER [18]
improved the edge recognition module of OGR. Vivid-
Graph [1] explored extracting data from network graphs
with deep neural networks, but this method has many
limitations. The graph extracted in the report was a
special kind of DNG: a solid circular node-link diagram.
The method only worked for graphs with straight edges
and circular nodes but no text. DNGs (diverse network
graphs) are more complicated than the network graphs
defined in OGER and VividGraph. There are many types
of DNGs [5, 19], including E-R diagrams of database
design, flowcharts, mind maps, etc.

We present a novel method called GraphDecoder
to extract data from DNGs. First, we build a deep
neural network based on U-Net [20] and the attention
mechanism. We design the backbone and loss function
according to the characteristics of the chart and add a
module with an attention mechanism to the decoder,
which improves the robustness of the network. Second,
we learn to imitate the process of human perception
of a DNG and analyze the extracted data to obtain

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2

Input Output Input

Input

A B

C Output Output

PNG/JPG PNG/SVG/JSON PNG/SVG/JSONPNG/JPG

PNG/JPG

Start

Judge if the user`s logical
address is aligned

Size

Viraddr is a
multiple of 2

Viraddr is a
multiple of 4

Return error
and end

Return error
and end

Assert that tlb
and pagetable

End
Calculate the page number
where the virtual address

is located

Different
conversion
methods

Find TLB Table

Judge

Return error
and end

Judge

Return error
and end

Return error
and end

Get the corresponding
page table entries

Readonly
or not

Physical address is
greater than the actual

physical address
The writing
logo is set

Returns
BusErrorException

Set the table
entry in use flag

Calculate the
Physical address

Assert that the physical
address plus size will not
exceed the memory size

Returns
NoException

End

Start

Judge if the user's logical
address is aligned

Size

Viraddr is a
multiple of 2

Viraddr is a
multiple of 4

Return error
and end

Return error
and end

Assert that tlb
and pagetable

End

Calculate the page number
where the virtual address is

located

Different
conversion

methods

Judge

Find TLB Table

Return error
and end

Return error
and end

Judge

Return error
and end

Get the corresponding
page table entries

Readonly
or not

Physical address is greater
than the actual physical

address

The writing
logo is set

Returns
BusErrorException

Set the table entry
in use flag

Calculate the
Physical address

Assert that the physical
address plus size will not
exceed the memory size

Returns
NoException

End

PNG/SVG/JSONPNG/SVG/JSON

MIND MAPPING

Benefits

Planning

Productivity

Creativity

Overview

Memorize

Simple

Projects

Goals

Strategies

Teamwork

Sharing

Colleagues

Ideas

Innovation

ThoughtsPNG/SVG/JSON

MIND MAPPING

Benefits

Overview

Memorize

Simple

Planning

Projects

Goals

Strategies

Productivity

Teamwork

Sharing

Colleagues

Creativity

Ideas

Innovation

Thoughts

Output

Output Output

Fig. 1. The graph decoder can extract DNG data from raster images and automatically retarget them. Our method can
be applied to many DNGs, including flowcharts (A), hierarchical diagrams (B), model graphs, hand-drawn sketches,
and mind maps (C).

network relational data. Our method is robust to the
edges of polylines and curves and supports three types
of nodes: rectangles, diamonds, and ellipses. We also
provide users with an interactive system. After the
user uploads a raster image, the system extracts its
underlying data. Users can redesign and modify data on
the system interface. The system can be applied in many
scenarios, such as mind maps, flowcharts, E-R diagrams,
and hierarchical structure diagrams.

We perform ablation experiments on our semantic
segmentation model; the results show that our neural
network greatly improves the ability to extract edges
from graphs. We also have applied structural and per-
ceptual similarity evaluations on the real corpus. After
redrawing the extracted results with AntV [21], we
compare them with the input images. We use NetSim-
ile [22] to evaluate the structural similarity and the
visual saliency map [23] to evaluate the perceptual
similarity. We established an additional corpus with
different resolutions and scales of DNGs to test the
robustness of our method for different scales of network
structure and pixels. Our experimental results and user
study show that our method offers great application
potential in the redesign and modification of DNGs. We
share differences between deep learning and heuristics.
We also illustrate the experience of visualization image
segmentation compared with natural images. Finally,
we discuss the limitations of this paper and future
work. Some of the limitations introduced by data-driven
models can be explored in correcting the chart norm.
Our contributions include three aspects:

(1) We defined the problem of data extraction from
DNGs. We verified the practical importance of this
study in various application domains.

(2) We designed a state-of-the-art deep learning model

and a pipeline to extract DNGs.
(3) We put forward multiple evaluations to demon-

strate that our method is effective and robust.

2 RELATED WORK

Our work is mainly related to three aspects: chart data
extraction, chart redesign, and attention mechanism.

2.1 Chart Data Extraction

Most visualization charts are represented as static im-
ages. The purpose of chart data extraction is to extract
the original data from the bitmap. Different from some
figure extraction works [24] which focus on locating the
position of the image in the paper and figure classifica-
tion, chart data extraction focuses on extracting original
data from figures. Chart data extraction helps designers
redesign and modify charts. There are many studies
on chart data extraction for simple charts such as bar
charts, line charts, and pie charts. For bar graphs, most
methods [9, 25, 26, 27] use the analysis of connected
components to extract bars in the charts. These meth-
ods are only effective for solid single-color bars. For
pie charts, the existing methods [9, 13, 25, 28, 29] are
based on the assumption of a solid pie chart without a
three-dimensional effect. These methods mainly detect
each slice by analyzing connected components [13] or
deep learning methods [28, 29]. Other methods [9, 25]
use curve fitting to locate each pie slice. Few methods
support line charts because of the difficulty of extracting
lines. Some methods [30, 31] can only extract line charts
with a single line. Some recent studies [6, 28, 29] used
deep neural networks for object detection to detect
bars, showing better performance than traditional im-
age processing. The latest methods use deep neural

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 3

networks to learn marked patches in the chart [15]
or detect key points in the chart [16], but they are
still not robust enough for multiple lines and lines of
different thicknesses. Mao et al. [32] proposed a method
of extracting data from meteorological facsimile charts.
Poco et al. [33] focused on heatmaps with legends. Wu
et al. [34] introduced a method to handle contour maps.

There are also some chart extraction frameworks and
tools that are semiautomatic, such as ChartSense [14],
DataThief [35], iVoLVER [36], Plot Digitizer [37], Da-
gra [38] and Engauge Digitizer [39]. These tools use
human-supplied data to improve extraction accuracy,
including chart types, key point positions, and line
positions. There are also some extraction works for
specific charts, such as ChemGrapher [40], a framework
for extracting compounds. Some works [41, 42] are
focused on science textbooks. The difference between
science textbooks and DNGs is that their objects are
the targets of natural images, not visualization charts.
Chen et al. proposed a model [43] to extract the timeline.
They proposed the GrabCut [44] method to improve the
segmentation results. For the chart types above, DNG
has more attributes. In addition to the structural at-
tribute (topological relationship), DNGs also have other
visual attributes (e.g., color, node shape, node size, and
location of the nodes).

The type of visualization most relevant to DNGs is the
network graph. OGR [17] used morphological methods
to extract network graphs. However, its network graph
definition has many limitations, such as solid circle
nodes and charts without text. These methods require
manual adjustment of the binarization threshold and
weak anti-noise ability. Users need to adjust the thresh-
olds of binarization and morphological operations, so
the robustness ability of the method is weak. OGER [18]
improved the edge detection ability of OGR and can
recognize dashed lines. However, it still has the same
limitations as OGR. Some studies [45, 46] focused on
graphs that are close to our definition of DNGs, but their
input was a set of stroke vectors. They included more
prior knowledge than static bitmaps. VividGraph [1]
used U-Net to segment network graph images. How-
ever, due to the limitation of their training data and
untuned CNN (convolutional neural network) architec-
tures, VividGraph only works for graphs with circular
nodes and straight edges but no text. Compared with
their work, we design our model and semantic parsing
module for wider application and higher accuracy, as
shown in Sec. 7.

Optimizing CNNs for feature extraction is an impor-
tant step in using deep learning methods. Haehn et
al. [47] proposed the possibility of using CNNs to extract
data from charts. They evaluated the performance of
four models, including MLP, LeNet [48], VGG [49],
and Xception [50]. Giovannangeli et al. [51] further
corroborated this view. However, their methods are not
suitable for high-dimensional data such as DNGs. The

output value of these methods is one-dimensional (e.g.,
the length of one line, the area of one circle, the angle
between two sides [47], or the number of nodes and
edges [51]). However, our task needs to output the
topological relationship of N2, where N represents the
number of nodes. There are also many visual attributes
(e.g., color map, node shape, node position). After pre-
liminary experiments, we find that the semantic seg-
mentation method is more promising. Neural networks
for semantic segmentation mainly include FCN [52], U-
Net [20], and SegNet [53]. These models have achieved
good results in the task of segmentation of natural
scenes. However, for chart images, the segmentation
task requires higher accuracy because tiny pixel errors
may result in large differences. Wang et al. [54] proposed
the application of the attention mechanism in computer
vision to make the model learn the areas that are impor-
tant to reduce errors. SENet [55] was the first to propose
the channel attention mechanism of the SE module from
the channelwise level, which can adaptively adjust the
characteristic response value of each channel. Oktay
et al. [56] designed a module with attention, which
prevented target discontinuity in medical images, such
as those of the pancreas, and achieved better results.
Zhou [11] used an encoder-decoder network with an
attention mechanism to complete the task of extracting
bar graphs. In this paper, we experimentally find that
the attention mechanism applied to medical image seg-
mentation can successfully improve the segmentation of
DNG images. We also discuss the difference between
natural images and visualization images in Sec. 8.

2.2 Chart Redesign
There are many charts in the real world that do not
conform to the principles of visualization design, and
chart extraction enhances these visualizations. [33] We
mainly discuss three principles related to the design
of DNGs. First, color plays an important role in chart
design. Wang et al. [57] applied a knowledge-based
model for learning color rules to visualize images. The
W3C standard [58] also specifies color rules for images
on web pages. The main purpose of some chart mining
work [33] is to recolor the chart. Second, different repre-
sentations of DNGs will also bring different perceptions
to users. The entity relationship diagram [3] has been
widely approved in the field of database design, using
three types of nodes and solid lines to represent data
relationships. E-R diagrams help database designers
build databases faster. Buzan et al. [4] first proposed
the mind map, which helps users efficiently express
their divergent thinking. Flow charts [2] can clearly
demonstrate algorithms in computer programming. Our
system provides different retargeting schemes for differ-
ent kinds of DNGs. Third, obtaining original data allows
further visualization past the raster image. Interactive
DNGs can ensure better user experience. There are
some other types of chart mining work [59, 60, 61] that

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 4

Semantic
Parsing

Input

Attention Map

Neural Network

Graphical Data Extraction

Text Data Extraction

CTPN CRNN

Semantic Map

[([240,340,197,26,0],
'Analytics &Decisions',0.97),
([768,340,214,26,0],
'Theoretical&Empirical’,1.00),
([238,486,203,22,0],
'Data Transformations',0.98),
([500,487,117,26,0],
'VIS2022',0.97),
([719,488,117,25,0],
'Applications’,1.00),
([200,576,276,26,0],
'Representations&lnteraction',0.98),
([760,577,197,28,0],
'Systems&Rendering’,1.00)]

Text Data

{"nodes": [{
"id": 0,
"x": 247,
"y": 402,
"color": "#ffffff",
"label": "Analytics &Decisions",
"fontsize": 19,
"type": "rect",
"w": 244,
"h": 63}, ……],

"links": [{
"id": 0,
"source": 2,
"target": 0,
"color": "#d9d5d0"}, ……],

"backcolor": "#ffffff"}

Output

Interactive System

Color Layout Data

Redesign and ModificationRedesign Output

Fig. 2. The main modules and processes of GraphDecoder.

converted raster charts into vector diagrams to make
the charts interactive, such as intelligent question and
answer, adding table notes, and adding auxiliary lines.

In this work, we provide methods and pipelines for
extracting data from DNGs and corresponding inter-
faces and applications for automatic redesign. However,
we do not contribute the design principles of DNGs, and
we assume that the target design is prior knowledge.

3 OVERVIEW

Our goal is to extract the original data from DNGs. The
traditional methods [1, 18] are only suitable for certain
simple graphs. DNGs have more data attributes, com-
plex data types, difficult edge recognition, and matching
problems between text and graphics. To solve these
problems, we use the OCR system to preprocess raster
images, use a semantic segmentation network with an
attention module to locate and classify each pixel, and
finally use the semantic parsing module to recover the
DNG.

We propose a framework named GraphDecoder,
which automatically extracts original data from DNG
images. Fig. 2 shows the pipeline of our framework. The
framework includes three components:

• Text Detection Module. To improve the performance
of semantic segmentation, we first extract the text
data in the chart. Through the OCR system, we
obtain the context and position of the text. We
remove the text area in the image and fill it with
color blocks. Then, we can obtain the DNG image
without text.

• Segmentation Neural Network. The segmentation neu-
ral network is the core module of our framework.

We constructed a semantic segmentation network
with an attention mechanism. This network can
accurately locate pixels at which the nodes and
edges are located and classify various types of
nodes. By adding attention modules and improving
the objective function, the network is robust to
continuous curves and polylines.

• Semantic Parsing Module. By analyzing the con-
nected components of the data obtained in the
previous two modules, we obtain the approximate
original data.

4 METHODS

4.1 Dataset

Graph data extraction requires a large number of train-
ing datasets, but most works usually use small-scale
datasets and keep the data private [6]. This is because
most datasets require manual labeling [62], which re-
quires high-quality control. The more advanced the
visual coding, the more difficult the annotation. To the
best of our knowledge, there is no existing DNG dataset
for data extraction. Therefore, we built our dataset using
the most popular visualization tools: D3 Library [63]
in JavaScript and Matplotlib [64] and Skimage [65] in
Python. The height and width of each image are defined
as H and W , where H,W ∈ [320, 800]. To improve the
robustness of the model, we also enhanced our dataset,
including cropping, stretching, adding noise, etc. Finally,
we selected 12, 000 images as the training set, 4, 000
images as the validation set, and 4, 000 images as the test
set. Python and JS each draw one-third of the images,
and the remaining are data-augmented images.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 5

We set the number of nodes at [0, 30], the thickness
of edges at [1, 10], and the number of edges at [0, 50].
The colors of the elements in the graphs are all random
between (0, 0, 0) and (255, 255, 255). The height and
weight of nodes are random between 5 and 100. We
assume that the types of nodes are rectangles, ellipses
and diamonds, and the types of edges are straight lines,
polylines and curves. All random attributes are evenly
distributed, ensuring that the training set covers most
styles of DNGs. Some samples of our training dataset
are shown in the appendix.

4.2 Text Detection Module

In the text detection module, we use CTPN [66] to locate
our textual area. CTPN combines a CNN with an LSTM
network to effectively detect horizontally distributed
text in complex scenes. CTPN uses a vertical anchor
regression mechanism to improve the performance of
detecting small-scale text proposals. Different from the
text detection in natural images, most of the texts in
the chart originate in digital form. CTPN considers the
characteristics of this type of text compared with Faster-
RCNN [67]. The width of the vertical anchor is fixed at
16 pixels. The height varies from 11 pixels to 273 pixels
(divided by 0.7 each time) for a total of 10 anchors.

After obtaining the text area, we use CRNN [68]
to recover the text content. Inspired by Bosechen [69],
we rotate each image by three angles, including 90◦,
180◦ and 270◦. Then, we perform text extraction to
obtain the most accurate results. In the end, we obtain a
list of texts: {tx, ty, tw, th, ta, T ext, Confidence}, where
tx, ty, tw, th, ta and Text are the center coordinates,
width, height, angle and content of the text. Confidence
is the confidence of the text. We consider the text to be
effective only when the confidence is greater than 0.95.
By this method, we can suppress the background noise
in the chart.

We also preprocess the input image based on the text
data, including removing the pixels in the text area and
filling it with pixel values around the text. This method
reduces the unnecessary noise generated by the text in
the graphics data in the semantic segmentation network.
We perform the expansion processing of kernel = (2, 2)
on the image, which solves the problem of edge pixel
breakage when the edge width is 1. We input the pre-
processed image into the segmentation neural network
for the next step of extracting graphics data.

4.3 Segmentation Neural Network

Compared with the network graphs defined in past
work [1], DNG introduces hollow nodes with more
shapes and nonstraight edges. This imposes greater
challenges to the segmentation model. We show some
examples of segmentation results from past models
trained on our dataset in Fig. 4(a). First, when mul-
tiple polylines enclose a rectangular area, the model

Attention GateMaxpoolConv, ReLU UpConv

(a) Segmentation Neural Network

1 × 1 𝐶𝐶𝐶𝐶𝐶

1 × 1 𝐶𝐶𝐶𝐶𝐶
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

𝐹𝐹1 × 𝐻𝐻1 × 𝑊𝑊1

𝐹𝐹2 × 𝐻𝐻2 × 𝑊𝑊2

1 × 1 𝐶𝐶𝐶𝐶𝐶 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

𝐹𝐹3 × 𝐻𝐻1 × 𝑊𝑊1

𝐻𝐻1 × 𝑊𝑊1 𝐻𝐻2 × 𝑊𝑊2

α

(b) Attention Gate
Fig. 3. Our segmentation neural network structure is
based on the U-Net network, with the addition of the
attention mechanism module and the modification of
the loss function and the backbone network of feature
extraction.

(a) VividGraph [1] (b) Ours
Fig. 4. Examples of segmentation results for different
models. The challenges of model segmentation brought
by DNG are shown in the box.

incorrectly identifies the polyline area as a rectangular
hollow node, as shown in the black box. Second, the
borders of hollow nodes are misidentified as edges, as
shown in the green box. Third, the edges are difficult to
recognize. The broken pixel results are shown as a blue
box. Inspired by pancreas segmentation [56] in medical
images, we improve the model so that it can more accu-
rately segment the above situation, as shown in Fig. 4(b).
The pancreas has the characteristics of changeable shape
and area, and the phenomena of oversegmentation and
undersegmentation often occur [56]. The pancreas is
an organ that changes in shape and size with body
health. Oversegmentation refers to the segmentation of
organs that do not belong to the pancreas into the pan-
creatic area. Undersegmentation represents insufficient
segmentation of the pancreas area. This is similar to the
situation in which DNG nodes and edges have variable
shapes and sizes, and the segmentation results are often
discontinuous.

First, we found that noisy pixels causing targets to
be discontinuous were misidentified as the background
class. Most of the visualization images include more
background pixels than object pixels, and we expect
the model to focus more on visual codes rather than
the background. We add an attention gate [56] to the

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 6

network, a module that learns the target structures. As
shown in Fig. 3, F1×H1×W1 is the feature map output
by the deeper convolutional layer. F2 ×H2 ×W2 is the
lower-level feature map. F , H , and W represent features,
height, and width, respectively. After the operation
shown in Fig. 3(b), we obtain the attention coefficient
α, α ∈ [0, 1]. We multiply it with the lower-level feature
map and output it to the upper decoder. α is defined as
follows:

αli = σ2
(
ψT

(
σ1

(
WT
x x

l
i +WT

g gi + bg
))

+ bψ
)

(1)

where σ1 is the ReLU function, σ2 is the sigmoid func-
tion, gi is the deeper-level feature map, xi is the lower-
level feature map, WT

x ,W
T
g , ψ

T are the convolution
operations, and bg, bψ is the bias of the convolution.
Through the attention map shown in Fig. 5(a), we can
determine that it depicts the border of the DNG, which
makes the model focus more on the visual codes in
visualizations. The color opacity of the attention map
represents the α value, which means that attention
increases the weight of the target area and suppresses
background noise.

During training, we found that the segmentation of
edge pixels is still difficult, whereas the results of other
categories are sufficiently accurate. The reason for this is
that edge pixels in the training set are fewer than other
pixels (node type, background type). We use a hybrid
training loss to solve class imbalance:

Lhybrid = Lwce + LDL (2)

where Lwce is the weighted cross entropy with log-
its [70], and LDL is the Dice loss [71].

Given the ground truth of each pixel i category yi and
the prediction of network y′i, Lwce is defined as follows:

Lwce = −
∑
i

(ωyi log (y
′
i) + (1− yi) log (1− y′i)) (3)

where ω is the weight of each category. yi ∈ {0, 1, 2, 3, 4}
represents the background, rectangle, ellipse, diamond
and edge. Because most pixels in the graph are back-
ground pixels, the edges occupy the smallest proportion
of pixels. We set the weight of the background class to
0.8 and the weight of the edge class to 1.25; the weights
of other node classes remained 1. These hyperparame-
ters are derived based on trial and error. This method
improves the detection performance of edge pixels while
maintaining node detection.

The Dice loss [71] is based on the Dice coefficient,
a metric that evaluates the similarity of two samples.
Dice loss is a region-dependent loss, which is different
from cross entropy loss. It helps the model segment the
foreground from the image to prevent situations such
as the incomplete segmentation of the edge objects in
Fig. 5(c). LDL is defined as follows:

LDL =
∑
i

(
1− 2yiy

′
i + γ

y2i + y′2i + γ

)
(4)

(a) Attention Map (b) Ground Truth

(c) VividGraph (d) Ours

Fig. 5. Due to the attention map and hybrid loss function,
our segmentation results are closer to the ground truth
than are those of VividGraph. In the green box, the nodes
in our semantic map are continuous, while the nodes in
(c) are discontinuous. In the blue box, the pixels on the
edges of our semantic map are also more continuous,
which is conducive to semantic parsing.

where γ is the Laplace smoothing factor, which prevents
the denominator from being zero when both yi and y′i
are zero. At the same time, the risk of overfitting can
be reduced. We set the value to 1. This loss function
can also help us solve the problem of sample imbalance,
thereby improving the performance of our network.

Chen et al. [43] proposed that most models of nat-
ural images are designed to use low-resolution, strong
semantics to improve detection, while the accuracy of
segmentation suffers. We found that one way to improve
segmentation accuracy (especially crispy edges) under
the same resolution model is to reduce the loss of infor-
mation during the convolution process, since visualiza-
tion images contain fewer features than natural images.
They do not require as many convolutional layers for
feature extraction as natural images. We simplified the
backbone from a four-layer encoder-decoder structure
to three layers. To eliminate the impact of reducing
the number of encoder-decoder layers on large targets
such as nodes, we learn the structure of VGG19 [49] to
thicken the convolutional layers of the last two back-
bone layers. Our model achieves better performance
than VividGraph [1]. More detailed comparison data are
included for the ablation experiments.

4.4 Semantic Parsing Module
After obtaining the semantic map, we need to parse
the semantics to obtain complete information of the
graph. To find node and edge candidates, we first extract
connected components (CC) [72] from the semantic map,
as shown in Fig. 6(a).

Second, we use mathematical morphology [73] on the
CCs. We use the opening operation on node CC to
eliminate small islands (e.g., Noise A and B in Fig. 6). We
then use the closing operation on node CC to eliminate
small holes and fill gaps of the contours (e.g., Noise C in
Fig. 6). We also use the closing operation on edge CC to
fuse narrow breaks and long thin gulfs (e.g., blue box

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 7

Ellipse Candidate
(Noise A)

Edge Candidate

Rectangle Node Candidate Edge Candidate
(Noise B)

Gap
(Noise C)

(a) CC Analysis

Edge Color
(R, G, B)

Node Color
(R, G, B)

Coordinate
(x, y)

Width
Height

Background Color
(R, G, B)

(b) Morphological Denoising

Traverse pixels around Node

Edge with only one
confidence value (Noise)

Edge with two
confidence values

(c) Relationship Calculation

Fig. 6. Semantic parsing process. In (a), we determine candidate CCs for edges and nodes by connected component
analysis and obtain (b) by morphological denoising. Thus, the visual attributes of the DNG are obtained through (b).
In (c), we traverse the pixels around the node to calculate the connection confidence and recover the connections.

in Fig. 4). Specifically, the opening operation is image
erosion followed by dilation with a disk structuring
element. The closed operation is the opposite. A disk
structuring element is similar to the convolution kernel,
and it is a small matrix used for image processing.
We define its size as 1

3

√
Avg(Areaj), where Avg(Areaj)

indicates the average area of all CCs. We obtain the
attributes of edges and nodes from these candidates, as
shown in Fig. 6(b). The shape types of nodes (rectangle,
ellipse, diamond) are classified by our segmentation
model. The color, coordinate and size are calculated by
CC. When the node color is different from the back-
ground color (e.g., Fig. 8), we consider the node to be
solid. Conversely, (e.g., Fig. 2), we judge the node to be
a hollow node.

Third, we improved the node reconnection algorithm
in VividGraph by imitating the way that humans per-
ceive DNGs so that our pipelines can cope with non-
straight edges and nodes with various shapes. When
people observe whether two nodes are connected, they
always look for a connecting edge around a node, so
our heuristic algorithm mimics the process of human
perception of connection. We consider the edges of three
different shapes: straight lines, polylines, and curves.
They exhibit three common characteristics. First, they
are all connected to the sides of nodes. Second, they are
all continuous pixels rather than dashed lines. Third,
each edge connects two nodes. According to these com-
mon characteristics, we design a general algorithm to
solve the topological analysis of DNGs. We traverse the
pixels around each node CC, as shown in Fig. 6. If a pixel
i belongs to a certain node, the confidence γqp that the
edge belongs to this node increases, where p, q represent
Node p and Edge q. Since an edge always belongs to two
nodes, the two nodes with the highest confidence are
connected. For Edge q, if max(γqp) or submax(γqp) is 0, we
consider the edge candidate to be noise, and we delete
it. We consider nodes p1 and p2 to be connected, where
p1 and p2 are the indices of max(γqp1) and submax(γqp2).
We then assign the data obtained by the text detection
module to nodes or edges. For each detection result t in
TextArrt with confidence > 0.95, we find the nearest
node p or edge q and assign t to it.

The detailed process and pseudocode of the parsing
module are attached in the appendix.

4.5 Large-Scale Graph Extraction

The GraphDecoder supports general scale (node number
≤ 30) DNGs. However, sometimes there are graphs with
more than 30 nodes in the study, and these images often
have a resolution greater than 1600×1600. This is a chal-
lenging task for chart mining because the dimensions
of the input in the semantic segmentation network are
stable, and high-resolution images will lose information
during the normalization process.

Algorithm 1 Large-Scale Graph Mining Algorithm
Input: CH×W : the large-scale graph image with high resolu-

tion
Output: y′: the semantic map of the large-scale graph

1: Put CH×W into segmentation neural network
2: Obtain the semantic map y′

entire

3: Cut CH×W into M pieces Cm,m = 1, 2, ...,M
4: Put Cm into segmentation neural network
5: Obtain the semantic map y′

m

6: Aggregate y′
m into y′

piece

7: Set α ∝ H ×W
8: for all Pixel i do
9: y′

i =

{
αy′

piece + (1− α)y′
entire, y

′
piece(i) = 4

αy′
entire + (1− α)y′

piece, y
′
entire(i) = 0, 1, 2, 3

10: end for
11: return y′;

To overcome this problem, we analyzed the charac-
teristics of the DNG. In the normalization process, edge
information is easily lost because the edge occupies a
few pixels, and the node information is still retained.
Therefore, we can cut the image into pieces, extract
them one by one, and then combine the semantic maps
of these pieces for semantic parsing. However, when
cutting, the nodes are easily cut into different shapes,
which causes errors in extraction. Therefore, we combine
the semantic map obtained after the normalization of
the whole image and the semantic map obtained after
cutting it into pieces for semantic parsing. We set a
confidence α ∈ [0.5, 1], which is proportional to the reso-
lution of the image. The confidence determines the bias
of the final semantic segmentation result. The details are
shown in Algorithm 1, where H,W are the height and
weight of the image and y′ represents the prediction of
the pixel category.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 8

(a) Input (b) Output

Fig. 7. The result of extracting data from the sketch.

5 APPLICATIONS

The graph decoder can be applied in many scenarios.
In this section, we mainly introduce three applications:
sketch transformation, raster image extraction and chart
redesign.

5.1 Sketch Transformation
The aim of visual engineers is to further reduce labor
costs in visual design; this is also the driving force
behind the development of visual analysis of production
links. In addition to the engineering cost, the design of
data visualization greatly affects the efficiency of data
mining.

We used GraphDecoder to make some contributions
in this regard. Users can transfer hand-drawn visualiza-
tion works to our system, after which our system will
combine an intelligent layout and color map based on
the algorithm and rules to quickly generate electronic
visualization works. This application can considerably
reduce the requirement for visual programming, which
allows designers to free their hands and quickly realize
ideas.

As shown in Fig. 7(a), the users can quickly pick up
the paper and pen to draw the graph when an idea
occurs to them. The users then only need to take a
picture of the graph they have drawn, upload it to our
system, and obtain an editable and interactive DNG,
as shown in Fig. 7(b). This application is not only
convenient for professional visual designers, but also
enables users who do not have programming skills to
create as much as they want.

The current version of GraphDecoder only supports
graphical data transformation of sketches compared
with electronic images because the text detection mod-
ule cannot effectively recognize handwritten text. This
limitation will also be discussed in Sec. 8.

5.2 Raster Image Extraction
Visualization images spread on the internet generally
take the form of raster images, which can vividly express
data characteristics. However, we always seek to obtain
their original data. For example, E-R diagrams [3] are
very common among DNGs. After drawing the E-R
diagram, the database programmer needs to build the
database. At this time, if the original data of the E-R

(a) Input

8/1/17Duomo

ticket Date

8/18/17
Uffizi Florencetrip

activity ZoeTuscanymtb cycling

sport Anna
Holiday familyswimming

Julius

transportation

accommodation Finn
adults

plane

apartmentTickets KLM

child
San Zanobi

(b) Output1

8/1/17Duomo

ticket Date

8/18/17Uffizi Florencetrip

activity ZoeTuscanymtb cycling

sport Anna
Holiday family

swimming

Julius

transportation
accommodation Finn

adults
plane

apartmentTickets KLM

child San Zanobi

(c) Output2

8/1/17Duomo

ticket Date

8/18/17Uffizi Florencetrip

activity ZoeTuscanymtb cycling

sport Anna
Holiday familyswimming

Julius

transportation

accommodation Finn
adults

plane

apartmentTickets KLM

child San Zanobi

(d) Output3

(e) Output4 (f) Output5 (g) Output6

Fig. 8. The results of extracting the data from mind map
and redesign. (b) is the extracted result. (c-d) are the
results of recoloring. (e-g) are the results of relayout.

diagram can be obtained quickly, the time and labor
costs can be reduced.

Using graphs to represent algorithms is a way to
quickly understand them. The flowchart [2] is a com-
monly used DNG to express algorithmic thinking. In-
formation on these algorithmic processes can be quickly
obtained through our system.

Fig. 1 shows some cases of extracting DNGs with
GraphDecoder, and more cases of E-R diagrams and
algorithm flowcharts are shown in the appendix.

5.3 Chart Redesign
An excellent layout and color scheme enable readers
to quickly grasp information and features in the dia-
gram [33, 74, 75]. For example, mind map [4] is an ef-
fective graphical tool for expressing divergent thinking.
The mind map uses the characteristics of graphics and
texts, expresses the relationships of various topics with
hierarchical diagrams, and establishes memory links
between topic keywords, graphics, colors, etc.

Fig. 8(a) is an image that depicts a family holiday
arrangement. We input it into GraphDecoder to obtain
its original data, which are generally output in the form
of a JSON file. We can directly redraw the mind map by
JSON to obtain the result shown in Fig. 8(b). In addition
to manually modifying this graph, we provide one-
click retargeting layouts and color schemes. The users
only need to input a static image, and then they can
easily recolor the DNG with a default recommended

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 9

color scheme as shown in Fig. 8(c) or a dark theme as
shown in Fig. 8(d). They can also obtain a variety of
visualization forms, as shown in Fig. 8(e-g).

The programmer of the database can quickly check the
attributes of each entity and the connection relationship
between the entities.

6 USER STUDY

To expand the application of GraphDecoder, we con-
ducted a user study. We used system trials, user inter-
views and questionnaires to obtain user feedback, which
can improve our system.

Procedure: Our user study includes five parts: (1)
informed consent of users, (2) introduction of GraphDe-
coder, (3) system trials, (4) questionnaire, and (5) in-
terview. We first informed the participants that their
answers would be used for our research and then clas-
sified them by age and occupation. Then, we verbally
introduced our system and methods to ensure that
every participant could understand the functions and
usage of our system. We invited users to implement our
system for data extraction and transformation, then used
questionnaires and interviews to obtain user feedback
and evaluate the actual effectiveness of our methods.

Recruitment: We recruited 60 participants. Six of the
participants were unable to understand our method
due to capacity limitations, and we ultimately recov-
ered 54 valid user data (µage=25.9 years; 32 computer
professionals; 22 noncomputer professionals). Some of
our participants were proficient with computers and
design, such as development engineers, visualization
designers, graphic designers and scientific researchers.
Other participants were noncomputer professionals,
such as teachers, middle school students, accountants,
and homemakers.

We recruited 5 additional designers (µage=25 years)
working on visualization to collect the pairs in the
questionnaire for pairwise comparison.

Questionnaire: We set up 13 questions in the ques-
tionnaire, including 8 scoring questions for the extrac-
tion results and 5 pairwise comparisons.

Scoring Questions: The hand-drawn sketches, mod-
eling graphs, mind maps, and flowcharts each account
for a quarter of the scoring questions of the extraction
results. Participants scored the extraction results based
on five aspects: color, position, node (size, shape), con-
nection relationship and text content, with a full score
of 100. Since there are no handwritten data in our text
extraction model dataset, the hand-drawn sketch is not
scored for text. The final result is shown in Fig. 9(a).
From the results, we can determine that our extraction
results can meet most of the needs of users. Most of the
average scores are above 90. The reason why the posi-
tion score is slightly lower than 90 is because we used a
small number of morphological methods in the semantic
parsing module, which caused the node position to shift.

2022/8/14 13:20 svg-scoring-result(2)(1).svg

file:///E:/WeChat Files/ssc_55555555/FileStorage/File/2022-08/svg-scoring-result(2)(1).svg 1/1

Color Position Node Connection Text

Flowchart

Modeling
Graph

Mindmap

Hand-drawn
Sketch

 100 70 100 70 100 70 100 70 100 70

(a) Scoring of extraction results
2022/8/14 13:34 svg-pairing-result(5)(1).svg

file:///D:/VIS2021/svg-pairing-result(5)(1).svg 1/1

Pair 1

Pair 2

Pair 3

Pair 4

Pair 5

Manual Extraction Automatic Extraction

−100 −50 0 50 100
(b) Pairwise comparisons

Fig. 9. Questionnaire scoring results. (a) is the result of 8
scoring questions for the extraction results. (b) is the re-
sult of the 5 pairwise comparisons. Pairs 1-5 correspond
to Questions 12-16 in the questionnaire. Circles depict
group averages (± 95% confidence intervals).

Therefore, it is necessary to avoid traditional methods in
the pipeline as much as possible in the future.

Pair Collection: Our pairwise comparisons neces-
sitated two groups. (1) Manual-extracted group: The
designers used their skill for tools such as Photoshop,
PowerPoint, Processon, etc. to redraw and redesign
DNGs by observing the image. (2) Autoextracted group:
The designers used our system to extract and redesign
DNGs.

We provided five designers with a DNG in bitmap
form and then asked them to redraw one DNG using
their tools and another one using our system. We sup-
plied a total of 5 DNGs and conducted a total of 25 trials.
We calculated the time T , the number of left mouse
clicks Nm, and the number of keyboard strokes Nk,
which were used for the two groups. The autoextracted
group achieved T of 85 seconds, Nm of 32.4, and Nk
of 9. The manual-extracted group achieved T of 1165.8
seconds, Nm of 465.2, and Nk of 424.8. This shows that
our system reduces designer time for redesigning DNGs.

For each DNG given, we selected pairs with similar
and correct results and added them to the pair compar-
ison. There are five pairs in total.

Pairwise Comparison: For the fairness of the com-
parison, we randomly marked the images of the two

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 10

A B

C

E F

D

Fig. 10. The interface of our system. The left side of the
interface is the input, and the right side is the output.
Elements include (A) choose and upload, (B) save, (C)
interactive panel, (D) automatic layout option, (E) auto-
matic color option, (F) mode switch.

groups as Picture 1 or Picture 2. The participants did not
know which was the autoextracted result. We designed a
rating slider with 100 on the far right and −100 on the
far left. The larger the positive value was, the greater
the user preferred Picture 2 on the right. The larger
the absolute value of the negative number, the greater
the user preferred Picture 1 on the left. Scoring sliders
are often employed for preference tasks [76] and have
high score reliability [77]. The slider was initially set
to 0, which made the questions unbiased [78]. When
quantifying the results, we set the score of the picture
from the autoextracted group to a positive value. The
complete result is shown in Fig. 9(b). The scores are all
close to the neutral value in the five comparisons, indi-
cating that participants showed no preference between
the two groups. This also shows that designers can use
our systems to redesign DNGs similar to manual results
in less time. The complete survey data related to the
questionnaire have been attached in the appendix for
further research.

Interview: Each participant also experienced our beta
system. We then conducted interviews with users to
improve our system. In the interview, we found that
users of different professional groups have different
requirements for the system. For noncomputer profes-
sionals, the types of DNGs they are most concerned
about are hand-drawn sketches and mind maps. Many
of them do not master visual programming, especially
older users. A woman who has been engaged in middle
school education for more than ten years said that
the data transformation of hand-drawn sketches saves
her a lot of time compared with the drawing module
in Microsoft Office. Another lady in the company’s
financial management mentioned in the interview that
mind maps are often used in daily life. However, those
who are not design professionals will generally search
for existing mind maps on the internet to imitate. Our
system can help to quickly modify the material in the
form of raster images on the internet. Based on the feed-
back we received, we have also improved the usability
of our tool, including by enlarging the text edit box

and merging the same attributes of nodes and edges.
These suggestions make our system friendlier and more
durable.

For computer professionals, in addition to the first
two DNGs in their work, there are also many algo-
rithm flowcharts and modeling graphs. Even though
most of them have mastered programming and have a
certain design foundation, they primarily indicated that
the interactive DNG extraction system can help them
complete their work faster. In the interview, three web
designers all expressed that the function of extracting
DNGs and saving JSON files is very convenient. A data
engineer praised our redesign of the E-R diagram, which
helped him understand the database structure more
quickly. It was said that our system should add more
automatic layout options and automatic color schemes
for different types of DNGs. We adopted the provided
opinions and increased the automatic layout options to
a total amount of ten. Two color matching strategies
are provided. One traditional color matching strategy
is used to map the same color to the other color, and
the other color matching strategy for modeling graphs
and flowcharts is used to map nodes of the same shape
to the same color.

Our revised system test version interface is shown in
Fig. 10. Area A is the button for selecting and uploading
the input image. Users can download the output in
area B. We provide three output formats, namely, PNG,
SVG, and JSON. Area C is our DNG interactive panel,
and users can customize almost all DNG attributes in
this area. There are three modes: the default mode, the
node addition mode, and the edge addition mode, as
shown in Area F. Area D and Area E are our options for
automatic color matching and automatic layout. More
demonstrations of our system have been attached in the
additional materials.

7 EVALUATION

Our evaluation experiment includes two parts. First,
we compared our segmentation module with a state-
of-the-art method [43] used in extracting timelines. We
also conducted ablation experiments on our semantic
segmentation network to prove the effectiveness of our
modifications to U-Net in VividGraph [1]. Second, we
conducted evaluations of structural similarity and per-
ceptual similarity on the real corpus and the virtual
corpus to prove the effectiveness of our method.

We deploy our pipeline on a PC with Intel Core i7-
9700F, NVIDIA GeForce 1660 Ti, and 16 GB of memory.
The deep learning framework is implemented based on
Keras [79].

7.1 Segmentation Module Evaluation

The accuracy of segmentation is a key component of
the accuracy of extracting DNG data. We designed a
special segmentation model for DNGs. Some work has

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 11

TABLE 1
Evaluation results of semantic segmentation model

Methods FIoU↑ MIoU↑ Back IoU↑ Rect IoU↑ Elli IoU↑ Dia IoU↑ Edge IoU↑
Chen et al. [43] 0.9529 0.5242 0.9773 0.4114 0.5612 0.5435 0.1276

VividGraph [1] 0.9895 0.9407 0.9944 0.9762 0.9859 0.9537 0.7831

Ours

Attention 0.9908 0.9479 0.9951 0.9801 0.9876 0.9659 0.8107

Lhybrid 0.9902 0.9441 0.9948 0.9791 0.9862 0.9585 0.8019

Backbone 0.9901 0.9439 0.9947 0.9821 0.9863 0.9659 0.7906

Attention+Lhybrid 0.9920 0.9536 0.9957 0.9866 0.9910 0.9712 0.8236

Attention+Backbone 0.9904 0.9454 0.9948 0.9820 0.9855 0.9689 0.7959

Backbone+Lhybrid 0.9908 0.9465 0.9952 0.9793 0.9881 0.9627 0.8070

Attention+Backbone+Lhybrid 0.9924 0.9562 0.9959 0.9857 0.9908 0.9717 0.8367

also used segmentation to extract other types of graphs.
Chen et al. proposed a model [43] to extract the timeline.
Since the model does not include the algorithm of the
node connection, we only compare the segmentation
modules. For a fair comparison, we train this module
on our training dataset.

We conducted ablation experiments on our dataset
to prove the effectiveness of our contribution to the
semantic segmentation model. We made three improve-
ments to the model, including adding a module with an
attention mechanism, using a hybrid loss function, and
simplifying the backbone of the model. We evaluate our
semantic segmentation model using intersection over
union (IoU), mean IoU (MIoU), and frequency-weighted
IoU (FIoU), which are defined as follows:

IoU =
yi

⋂
y′
i

yi
⋃

y′
i

MIoU = 1
k+1

∑k
i=0

pii∑k
j=0 pij+

∑k
j=0 pji−pii

FIoU = 1∑k
i=0

∑k
j=0 pij

∑k
i=0

pii∑k
j=0 pij+

∑k
j=0 pji−pii

,

(5)

where pij represents the situation. The ground truth
is i, and the prediction is j. k is the number of pixel
classifications. We set k = 5 in our task.

IoU represents the overlap area ratio of the ground-
truth bounding box and predicted bounding box, which
is usually employed for evaluation [80, 81]. Due to
the characteristics of the graphs, the background pixels
account for a large proportion, so MIoU is more suitable
for evaluating our model than is FIoU. The experimental
results are shown in Table 1. From the results, we can
determine that the IoU of each category has improved,
especially the IoU of the edge. Therefore, our modi-
fications to the model have effectively improved the
semantic segmentation capabilities of graphs (especially
edges). This is because the attention mechanism we
introduced can solve the oversegmentation and under-
segmentation problems caused by DNG features, as
shown in Fig. 4.

7.2 Structural and Perceptual Evaluation
We propose two methods to evaluate the effectiveness of
our extracted results. The first method is NetSimile [22],

which is a method widely used to compare the similar-
ity of two network structures. NetSimile is defined as
follows:

NetSim(Pre,Gt) =

n∑
i=1

∥∥Sigipre − Sigigt
∥∥∥∥Sigipre∥∥+

∥∥Sigigt∥∥ (6)

where Sigipre is the signature vector of the extracted
network structure and Sigigt is the signature vector of
the ground truth. The signature vector contains 35-
dimensional features, including node in and out degree,
clustering coefficient, and ego. This method measures
the similarity of the network structure by comparing the
Canberra distance of two signature vectors. The lower
NetSimile is, the higher the structural similarity. The
advantage of using this metric to evaluate structural
similarity is that there is no need for one-to-one corre-
spondence of node numbers. If a node is not detected,
this method can also correctly measure the similarity
of the two networks. To demonstrate NetSimile more
intuitively, we compare the network structure of the
ground truth with the network structure of the same
number of nodes but with no edges to obtain the largest
NetSimile NetSimmax. Then, the structural similarity
StruSim is defined as follows:

StruSim(Pre,Gt) = (1−NetSim(Pre,Gt)

NetSimmax
)×100% (7)

where StruSim ranges from 0 to 100%. StruSim =
100% means that the two network structures are the
same.

The other method is to compare the visual saliency
map of the input images and the redrawn images. The
information of nodes and links will affect the metrics,
including size, location, color, etc. We used AntV to
redraw the extracted data into a DNG image. We then
used the visual saliency model proposed by Bylinskii
et al. [23] to output the visual saliency map of the two
images that need to be compared. This visual saliency
model can output the important areas of each graph
and assign all pixels a score from 0 to 255. We evaluate
the perceptual similarity by comparing the difference
in the average scores of the two images. Similarly,

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 12

2022/8/20 03:33 其他图表 | G2

https://g2.antv.vision/zh/examples/other/other#violin 1/1

搜索

场景案例

交互语法

折线图

面积图

柱状图

条形图

饼图

点图

雷达图

漏斗图

热力图

箱型图

烛形图

仪表盘

地图

分面

关系图

组件使用

其他图表

大数据量

其他图表

StruSim PerSim
-50%

0%

50%

100%

150%
GraphDecoder VividGraph

JavaScript Data

312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

// 小提琴图用 KDE transform 提供数据
const dv1 = new DataView().source(data).transform({

type: 'kde',
extent: [-1, 2], // 采样范围
fields,
as: ['key', 'y', 'size'], // 生成的统计字段：字段名、采样点、采样点对应
groupBy: ['Species'],
minSize: 0.01, // 小于这个值的概率将被忽略

});
// 需要根据分组提供分位值等统计数据，所以提前拍平数据
const dv2 = new DataView().source(data);
dv2.transform({

type: 'fold',
fields,

});
// 计算 95% 分位值，用于画 95% 分位线
const dv3 = new DataView().source(dv2).transform({

小提琴图

G2 教程 API 图表示例 周边生态 国内镜像 所有产品搜索… 4.2.6

OGER with
Semantic Parsing

Fig. 11. The results of evaluation experiments on a real
data corpus. The circles show the median values. Error
bars depict the interquartile range.

we also divide the difference between this score and
the ground truth score into a perceptual similarity
PerSim ∈ [0, 100%]. PerSim is defined as follows:

PerSim(Pre,Gt) = 100%− |Salipre − Saligt|
Saligt

(8)

Saligt is the visual saliency map score of the ground
truth, and Salipre is the visual saliency map score of
our extraction results.

We collected 100 images from E-Charts, D3, AntV,
Google, and Xmind, and user hand-drawn sketches
were used as our evaluation dataset. We compared
our method with VividGraph [1] and OGER [18] (an
improved version of OGR [17]). VividGraph does not
have a text extraction module, so we use our text
detection module to extract texts for fair comparison.
VividGraph uses an untuned segmentation model, and
its reconnection algorithm is not suitable for the con-
nection of nonstraight edges. Our real dataset contains
many DNGs with hollow nodes and nonstraight edges
(as shown in Fig. 1), which results in the poor StruSim
achieved by VividGraph. OGER has many limitations.
OGER cannot extract texts and classify nodes. It cannot
analyze the shape of nodes and edges, nor can it match
textual data and graphical data. We added our semantic
parsing module to enable a fair comparison. This also
enables OGER to handle connections of nonstraight
edges in the dataset. However, compared with end-to-
end methods, OGER still has many limitations in com-
parison. Since OGER is entirely a heuristic method, we
need to adjust the segmentation threshold for different
resolutions and different scales of network graphs and
binarization parameters for different colormaps. We also
resize the images to a suitable resolution and set the
proper threshold. These operations are not counted in
the time of the OGER.

The evaluation results are shown in Fig. 11. Compared
with VividGraph and OGER, our method achieves the
best results for both the StruSim and PerSim metrics.
The results show that our method can extract data
from DNGs in the real world with better quality than
other state-of-the-art methods. The error of PerSim is
primarily due to the rich styles of many DNGs in the real
world, such as gradient colors. When we redraw, our

system does not have a gradient color option, and the
graph is filled with a single color. However, we can find
that our methods still correctly identify the connection
relationships of these DNGs from StruSim. The graph
decoder can handle most DNGs, especially when DNGs
include noise, nonsolid nodes, and different edge sizes,
which are all difficult for morphological methods.

In addition, we found that image resolution and struc-
tural complexity are important factors affecting extrac-
tion accuracy. Therefore, we constructed an additional
set of evaluation data corpora with different resolutions
and numbers of nodes. To ensure that the evaluation
corpora and the training dataset do not overlap, we
chose AntV as the visualization tool for the additional
corpus. Each image in the corpus has a different layout,
different colors, and different node sizes and edge types.
We chose three resolutions of 640 × 640, 960 × 960,
and 1280 × 1280 and three types of node numbers
around 10, 20, and 30. We conducted experiments for
comparison with OGER and VividGraph on nine sets of
corpora. The experimental data are shown in Fig. 12.
Our method achieves state-of-the-art results in terms
of all three metrics. OGER with semantic parsing is a
complete heuristic method, so its results change with
the resolution and the number of nodes. Although we
set optimal thresholds for each set of OGER to enable
smooth binarization and skeletonization, our results are
also superior to it. This is because OGER’s segmentation
method does not work for hollow nodes. The segmen-
tation model of VividGraph causes the phenomena of
oversegmentation and undersegmentation, and the node
reconnection algorithm can only recover the connections
of straight edges, so StruSim is lower. These results
confirm that our methods can extract DNGs of different
scales.

7.3 Time Performance
Our method also consumes less time than OGER and
VividGraph. We first focus on real-world datasets.
GraphDecoder spent an average of 3.115 (95% CI:
3.108 − 3.122, p<0.01) seconds on this corpus, while
OGER spent an average of 6.585 (95% CI: 6.507− 6.663,
p<0.01) seconds; VividGraph spent an average of 3.184
(95% CI: 3.157−3.210, p<0.01) seconds. Our methods are
faster than OGER because our segmentation uses deep
learning methods. This time gap increases with the im-
age resolution. Our time performance is also improved
over VividGraph because our semantic parsing module
traverses each node: the corresponding time complexity
is O(N). VividGraph traverses every two nodes, with
complexity O(N2).

We also evaluated the time performance based on
additional datasets. As shown in Fig. 12(c), we found
that at the same resolution, when the number of nodes
increases, the average time spent by all three meth-
ods increases slightly. However, when the resolution
increases, the average time consumption of the OGER

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 13
2022/8/15 01:21 svg-performance(1)(1).svg

file:///E:/WeChat Files/ssc_55555555/FileStorage/File/2022-08/svg-performance(1)(1).svg 1/1

Method Resolution of Nodes Structural Similarity (a) Perceptual Similarity (b) Time Performance (c)
Number

Node≤10
Node≤20
Node≤30
Node≤10
Node≤20
Node≤30
Node≤10
Node≤20
Node≤30

Node≤10
Node≤20
Node≤30
Node≤10
Node≤20
Node≤30
Node≤10
Node≤20
Node≤30

Node≤10
Node≤20
Node≤30
Node≤10
Node≤20
Node≤30
Node≤10
Node≤20
Node≤30

94.00%

94.62%

95.17%

95.83%

96.32%

97.29%

96.81%

97.66%

98.09%

55.12%

57.65%

54.29%

70.79%

71.79%

70.41%

81.79%

83.85%

81.13%

46.50%

46.91%

45.70%

67.20%

64.18%

63.58%

71.30%

68.77%

67.86%

98.65%

99.08%

98.10%

98.47%

99.74%

99.63%

98.32%

99.90%

99.90%

62.75%

59.83%

59.75%

69.13%

59.31%

61.93%

71.68%

58.87%

63.38%

48.41%

49.72%

48.88%

28.82%

30.06%

31.96%

15.86%

22.76%

24.09%

2.99s

3.04s

3.03s

3.06s

3.02s

3.10s

3.14s

3.11s

3.11s

2.86s

6.52s

12.33s

2.98s

6.46s

11.35s

3.10s

6.54s

13.18s

3.37s

3.47s

3.35s

3.42s

3.50s

3.62s

3.57s

3.52s

3.64s

0% 25% 50% 75% 100% 0% 25% 50% 75% 100% 0 5 10 15

GraphDecoder

OGER with
 Semantic Parsing

VividGraph

640×640

960×960

1280×1280

640×640

960×960

1280×1280

640×640

960×960

1280×1280

Fig. 12. The results of evaluation experiments on additional sets of evaluation data corpora. In (a), we used structural
similarity to evaluate the extraction accuracy of relationships. In (b), we used perceptual similarity to evaluate the
extraction accuracy of various visual attributes. In (c), we show the time spent by each method. The white values
represent the mean values. Error bars depict ± 95% CIs for mean values.

increases significantly, while the average time consump-
tion of the others remains stable. This illustrates the time
performance advantage of the deep learning module.
In addition, our time performance is better than that
of VividGraph under the same conditions. This again
proves that our method is more efficient than Vivid-
Graph in computing node relations.

8 DISCUSSION

8.1 Deep Learning or Heuristic Methods
The popularity of deep learning brings tremendous
changes to visualization research [82]. We believe that
deep learning should be used in scenarios for which
heuristic methods have limitations. If heuristic methods
work well, then deep learning is of little significance.

We designed a deep learning model to segment nodes
and edges. Compared with heuristic methods such as
OGR [17] and OGER [18], deep learning models have
better robustness and time performance. First, heuristic
methods need a suitable threshold for binarization, but
there is no perfect threshold for the various colormaps
of real-world DNGs to distinguish all targets and back-
grounds. Second, deep learning solves the limitation of
the heuristic method for hollow nodes because heuristic
methods encounter difficulty distinguishing the edges
and outlines of hollow nodes. Third, existing heuristic
methods for segmenting network graphs do not include
node classification modules. They are only suitable for
graphs with circular solid nodes. If we attempt to
complete the node classification, heuristic segmentation
methods need to add more complex thresholds and
rules. However, our deep learning model has integrated
these.

In our semantic parsing module, we use heuristic
methods to analyze semantic maps. We did not use
deep learning [11, 41, 42] to extract relationships for
two reasons. First, the heuristic method can already
effectively analyze the relationship, as shown in the
structural evaluation in section 7. Second, we extract
many attribute values from the semantic maps, includ-
ing relationships, positions, colors, sizes, and shapes. A
single deep learning model cannot accurately regress too
many attribute values. If we design a model for each
attribute, the pipeline will be redundant. For this part,
the heuristic method is simple and effective.

8.2 Visualizations or Natural Images
There are works [6, 43] which propose chart extraction in
relation to the difference between graphic and natural el-
ements. Most of the existing CNN models and attention
mechanisms are designed based on natural images. On
the one hand, they are concerned with large objects such
as people, trees, and vehicles. On the other hand, they
segment low-level semantics. For example, a person is
recognized, but the result is slightly wider and shorter
than the ground truth. This has no effect on the desired
outcome. However, the situation is different for charts,
especially DNGs.

Visualization images should be more focused on the
ambiguity of basic geometric shapes. DNGs have many
edges and nodes with various shapes. Since most of
the targets of DNG are basic geometric shapes, they are
easily confused with hollow nodes due to the ambiguity
caused by edges during segmentation. When design-
ing a segmentation model for visualization images, we
suggest paying attention to the undersegmentation and

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 14

oversegmentation categories of the attention region and
loss function. In DNGs, both of these categories are
edges.

Additionally, due to the difficulty of labeling and
the lack of public corpora, the training sets for most
data-driven visualization work [1, 11, 83] are synthetic
datasets. The scale of such datasets is smaller than that
of common datasets of natural images (e.g., COCO [84]).
Since medical image segmentation also requires high-
level semantics and is implemented with the character-
istics of small datasets, we found that some methods can
be borrowed for visualization image segmentation.

The recovery of various visual attributes from visual-
izations is actually a multiple perception task [47, 85].
Bar graphs require the perception of area or length,
pie charts require perception of angle, and line graphs
require the perception of the direction and position
of lines. DNGs necessitate more tasks, including the
determination of area, shape, color, text, relationship
and position. Every perception task requires high-level
semantics.

To solve complex perceptual tasks, we believe that
imitating the process of human understanding visual-
ization can be considered. The models of Chen et al. [43]
focus on global information and local information of
timelines, respectively. Our pipeline also divides the
complex perception task of DNG into two steps: first
obtaining global information through a segmentation
model and then recovering local information through
semantic parsing.

8.3 Limitations and Future Work
The current version of GraphDecoder also has certain
limitations.

First, the data-driven segmentation module also
makes the model constrained by the training set. The
semantic manual annotation of DNGs is a complicated
task, so we designed a synthetic dataset as a training
set. We have strived to cover various elements of dif-
ferent DNGs, including visualization tools, node shape,
node size, node distribution, edge type, edge thickness,
colormap, and text. The DNGs that the current ver-
sion of GraphDecoder can handle represent 85.19% of
participants in our user study. However, the styles of
DNG in the real world are endless. We introduce noise
into the training set via data augmentation, but with no
elements (e.g., chart title, chart annotation) other than
the DNG content. For the removal of these elements,
known methods [24, 33] can be used in combination.
We plan to make the code of DNG generation and our
datasets available for the visualization community and
construct a larger dataset of DNGs in the future.

Second, a surprising finding is that rectangles or
rounded rectangles may be misidentified as ellipses
(Fig. 13) when the input DNG is a flowchart because
the flowcharts in the training set are regular, which
means that the first node of a standard flowchart is

(a) Input (b) Segmentation Result

Fig. 13. A case of segmentation fault. The boundaries of
the red nodes are incorrectly identified as ellipses.

an ellipse [2]. This phenomenon indicates that our seg-
mentation model not only learns local features but also
learns global features of various DNGs. We can exploit
this limitation to discover irregular DNG images in the
future.

Third, we retained the heuristic method in the se-
mantic parsing module. We attempted to transfer the
end-to-end method [11] of other chart types to DNGs
but found that it did not function successfully. This
is because the DNGs contain excessive data attributes.
The heuristic semantic parsing module ensures the ro-
bustness and correctness of the original data obtained
from the semantic map but also increases the time
consumption. At the same time, the heuristic module
cannot effectively solve the ambiguity of cross-edges.
We can use the direction vector judgment [18] to solve
a part of the cross-edge problem, but the overall effect
is not good enough. We plan to improve the semantic
parsing module.

Finally, although the current OCR system is mature,
there are still some limitations. For example, it is difficult
to extract hand-drawn text, which means that we can
only handle hand-drawn DNGs without text. However,
this is a common problem in the OCR field. We will
replace the text detection module with a better OCR
module in the future.

9 CONCLUSION

We proposed a method to extract the original data
of DNG images. Our system, GraphDecoder, can be
applied for sketches, raster image extraction and chart
design. Our method is suitable for mind maps, E-R di-
agrams, flowcharts, and tree diagrams. We designed an
attention-aware semantic segmentation neural network
to improve the ability to extract DNGs. Our evalua-
tion of a real data corpus and additional data corpora
demonstrates that GraphDecoder can efficiently and cor-
rectly extract DNGs of different scales, resolutions, and
types. We also shared our experience in data extraction
from advanced and complex graphs such as DNGs and
discussed how to improve and optimize our work in the
future.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 15

REFERENCES

[1] S. Song, C. Li, Y. Sun, and C. Wang, “Vividgraph: Learning to
extract and redesign network graphs from visualization images,”
IEEE Transactions on Visualization and Computer Graphics, 2022.

[2] I. Nassi and B. Shneiderman, “Flowchart techniques for struc-
tured programming,” ACM Sigplan Notices, vol. 8, no. 8, pp. 12–
26, 1973.

[3] P. P.-S. Chen, “The entity-relationship model—toward a unified
view of data,” ACM transactions on database systems (TODS), vol. 1,
no. 1, pp. 9–36, 1976.

[4] T. Buzan, Use both sides of your brain. EP Dutton New York, 1983.
[5] Y. Liu, X. Lu, Y. Qin, Z. Tang, and J. Xu, “Review of chart recogni-

tion in document images,” in Visualization and Data Analysis 2013,
vol. 8654. International Society for Optics and Photonics, 2013,
pp. 384–391.

[6] K. Davila, S. Setlur, D. Doermann, U. K. Bhargava, and V. Govin-
daraju, “Chart mining: a survey of methods for automated chart
analysis,” IEEE transactions on pattern analysis and machine intelli-
gence, 2020.

[7] P. Zhang, C. Li, and C. Wang, “Viscode: Embedding information
in visualization images using encoder-decoder network,” IEEE
Transactions on Visualization and Computer Graphics, 2020.

[8] J. Fu, B. Zhu, W. Cui, S. Ge, Y. Wang, H. Zhang, H. Huang,
Y. Tang, D. Zhang, and X. Ma, “Chartem: Reviving chart images
with data embedding,” IEEE Transactions on Visualization and
Computer Graphics, 2020.

[9] M. Savva, N. Kong, A. Chhajta, L. Fei-Fei, M. Agrawala, and
J. Heer, “Revision: Automated classification, analysis and re-
design of chart images,” in Proceedings of the 24th annual ACM
symposium on User interface software and technology, 2011, pp. 393–
402.

[10] J. Yuan, C. Chen, W. Yang, M. Liu, J. Xia, and S. Liu, “A survey of
visual analytics techniques for machine learning,” Computational
Visual Media, vol. 7, no. 1, pp. 3–36, 2021.

[11] F. Zhou, Y. Zhao, W. Chen, Y. Tan, Y. Xu, Y. Chen, C. Liu, and
Y. Zhao, “Reverse-engineering bar charts using neural networks,”
Journal of Visualization, pp. 491–435, 2021.

[12] R. Burns, S. Carberry, and S. Elzer Schwartz, “An automated
approach for the recognition of intended messages in grouped
bar charts,” Computational Intelligence, vol. 35, no. 4, pp. 955–1002,
2019.

[13] P. De, “Automatic data extraction from 2d and 3d pie chart im-
ages,” in 2018 IEEE 8th International Advance Computing Conference
(IACC). IEEE, 2018, pp. 20–25.

[14] D. Jung, W. Kim, H. Song, J.-i. Hwang, B. Lee, B. Kim, and J. Seo,
“Chartsense: Interactive data extraction from chart images,” in
Proceedings of the 2017 chi conference on human factors in computing
systems, 2017, pp. 6706–6717.

[15] N. Siegel, Z. Horvitz, R. Levin, S. Divvala, and A. Farhadi, “Fig-
ureseer: Parsing result-figures in research papers,” in European
Conference on Computer Vision. Springer, 2016, pp. 664–680.

[16] J. Luo, Z. Li, J. Wang, and C.-Y. Lin, “Chartocr: Data extraction
from charts images via a deep hybrid framework,” in Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer
Vision, 2021, pp. 1917–1925.

[17] C. Auer, C. Bachmaier, F. J. Brandenburg, A. Gleißner, and J. Reisl-
huber, “Optical graph recognition,” in International Symposium on
Graph Drawing. Springer, 2012, pp. 529–540.

[18] R. Opmanis, “Optical graph edge recognition.” in VISIGRAPP (3:
IVAPP), 2018, pp. 184–191.

[19] E. Brynjolfsson and K. McElheran, “The rapid adoption of data-
driven decision-making,” American Economic Review, vol. 106,
no. 5, pp. 133–39, 2016.

[20] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” in International
Conference on Medical image computing and computer-assisted inter-
vention. Springer, 2015, pp. 234–241.

[21] “Antv,” https://g6.antv.vision/.
[22] M. Berlingerio, D. Koutra, T. Eliassi-Rad, and C. Faloutsos,

“Netsimile: A scalable approach to size-independent network
similarity,” arXiv preprint arXiv:1209.2684, 2012.

[23] Z. Bylinskii, N. W. Kim, P. O’Donovan, S. Alsheikh, S. Madan,
H. Pfister, F. Durand, B. Russell, and A. Hertzmann, “Learning
visual importance for graphic designs and data visualizations,”

in Proceedings of the 30th Annual ACM symposium on user interface
software and technology, 2017, pp. 57–69.

[24] J. Chen, M. Ling, R. Li, P. Isenberg, T. Isenberg, M. Sedlmair,
T. Moller, R. S. Laramee, H.-W. Shen, K. Wunsche et al., “Vis30k: A
collection of figures and tables from ieee visualization conference
publications,” IEEE Transactions on Visualization and Computer
Graphics, 2021.

[25] A. Balaji, T. Ramanathan, and V. Sonathi, “Chart-text: A fully au-
tomated chart image descriptor,” arXiv preprint arXiv:1812.10636,
2018.

[26] W. Dai, M. Wang, Z. Niu, and J. Zhang, “Chart decoder: Gener-
ating textual and numeric information from chart images auto-
matically,” Journal of Visual Languages & Computing, vol. 48, pp.
101–109, 2018.

[27] R. A. Al-Zaidy and C. L. Giles, “A machine learning approach for
semantic structuring of scientific charts in scholarly documents.”
in AAAI, 2017, pp. 4644–4649.

[28] J. Choi, S. Jung, D. G. Park, J. Choo, and N. Elmqvist, “Visual-
izing for the non-visual: Enabling the visually impaired to use
visualization,” in Computer Graphics Forum, vol. 38, no. 3. Wiley
Online Library, 2019, pp. 249–260.

[29] X. Liu, D. Klabjan, and P. NBless, “Data extraction from charts
via single deep neural network,” arXiv preprint arXiv:1906.11906,
2019.

[30] M. K. I. Molla, K. H. Talukder, and M. A. Hossain, “Line
chart recognition and data extraction technique,” in International
Conference on Intelligent Data Engineering and Automated Learning.
Springer, 2003, pp. 865–870.

[31] V. K. Reddy and C. Kaushik, “Image processing based data ex-
traction from graphical representation,” in 2015 IEEE International
Conference on Computer Graphics, Vision and Information Security
(CGVIS). IEEE, 2015, pp. 190–194.

[32] K. Mao, X. Chen, K. Zhu, D. Hu, and Y. Li, “A method to extract
essential information from meteorological facsimile charts,” In-
ternational Journal of Pattern Recognition and Artificial Intelligence,
vol. 33, no. 01, p. 1954001, 2019.

[33] J. Poco, A. Mayhua, and J. Heer, “Extracting and retargeting
color mappings from bitmap images of visualizations,” IEEE
transactions on visualization and computer graphics, vol. 24, no. 1,
pp. 637–646, 2017.

[34] R.-Q. Wu, X.-R. Cheng, and C.-J. Yang, “Extracting contour
lines from topographic maps based on cartography and graphics
knowledge,” Journal of Computer Science and Technology, vol. 9,
no. 02, pp. 58–64, 2009.

[35] A. Flower, J. W. McKenna, and G. Upreti, “Validity and reliability
of graphclick and datathief iii for data extraction,” Behavior
modification, vol. 40, no. 3, pp. 396–413, 2016.

[36] G. G. Méndez, M. A. Nacenta, and S. Vandenheste, “ivolver:
Interactive visual language for visualization extraction and re-
construction,” in Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems, 2016, pp. 4073–4085.

[37] A. J. Kadic, K. Vucic, S. Dosenovic, D. Sapunar, and L. Puljak,
“Extracting data from figures with software was faster, with
higher interrater reliability than manual extraction,” Journal of
clinical epidemiology, vol. 74, pp. 119–123, 2016.

[38] “Dagra data digitizer,” https://www.datadigitization.com/.
[39] M. Mitchell, B. Muftakhidinov, T. Winchen, A. Wilms, B. van

Schaik, badshah400, Mo-Gul, T. G. Badger, Z. Jedrzejewski-
Szmek, kensington, and kylesower, “markummitchell/engauge-
digitizer: Nonrelease,” Jul. 2020. [Online]. Available: https:
//doi.org/10.5281/zenodo.3941227

[40] M. Oldenhof, A. Arany, Y. Moreau, and J. Simm, “Chemgrapher:
optical graph recognition of chemical compounds by deep learn-
ing,” Journal of Chemical Information and Modeling, vol. 60, no. 10,
pp. 4506–4517, 2020.

[41] A. Kembhavi, M. Salvato, E. Kolve, M. Seo, H. Hajishirzi, and
A. Farhadi, “A diagram is worth a dozen images,” in European
conference on computer vision. Springer, 2016, pp. 235–251.

[42] D. Kim, Y. Yoo, J.-S. Kim, S. Lee, and N. Kwak, “Dynamic
graph generation network: Generating relational knowledge from
diagrams,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018, pp. 4167–4175.

[43] Z. Chen, Y. Wang, Q. Wang, Y. Wang, and H. Qu, “Towards au-
tomated infographic design: Deep learning-based auto-extraction
of extensible timeline,” IEEE transactions on visualization and
computer graphics, vol. 26, no. 1, pp. 917–926, 2019.

https://g6.antv.vision/
https://www.datadigitization.com/
https://doi.org/10.5281/zenodo.3941227
https://doi.org/10.5281/zenodo.3941227

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 16

[44] C. Rother, V. Kolmogorov, and A. Blake, “” grabcut” interactive
foreground extraction using iterated graph cuts,” ACM transac-
tions on graphics (TOG), vol. 23, no. 3, pp. 309–314, 2004.

[45] J. Wu, C. Wang, L. Zhang, and Y. Rui, “Offline sketch parsing
via shapeness estimation,” in Twenty-Fourth International Joint
Conference on Artificial Intelligence, 2015.

[46] X.-L. Yun, Y.-M. Zhang, J.-Y. Ye, and C.-L. Liu, “Online hand-
written diagram recognition with graph attention networks,” in
International Conference on Image and Graphics. Springer, 2019, pp.
232–244.

[47] D. Haehn, J. Tompkin, and H. Pfister, “Evaluating ‘graphical per-
ception’with cnns,” IEEE transactions on visualization and computer
graphics, vol. 25, no. 1, pp. 641–650, 2018.

[48] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the
IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[49] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[50] F. Chollet, “Xception: Deep learning with depthwise separable
convolutions,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2017, pp. 1251–1258.

[51] L. Giovannangeli, R. Bourqui, R. Giot, and D. Auber, “Toward
automatic comparison of visualization techniques: Application
to graph visualization,” Visual Informatics, 2020.

[52] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional net-
works for semantic segmentation,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2015, pp. 3431–
3440.

[53] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep
convolutional encoder-decoder architecture for image segmenta-
tion,” IEEE transactions on pattern analysis and machine intelligence,
vol. 39, no. 12, pp. 2481–2495, 2017.

[54] X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural
networks,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2018, pp. 7794–7803.

[55] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 7132–7141.

[56] O. Oktay, J. Schlemper, L. L. Folgoc, M. Lee, M. Heinrich,
K. Misawa, K. Mori, S. McDonagh, N. Y. Hammerla, B. Kainz
et al., “Attention u-net: Learning where to look for the pancreas,”
in Proceedings of the 1st Conference on Medical Imaging with Deep
Learning (MIDL 2018), 2018, pp. 1–10.

[57] L. Wang, J. Giesen, K. T. McDonnell, P. Zolliker, and K. Mueller,
“Color design for illustrative visualization,” IEEE Transactions on
Visualization and Computer Graphics, vol. 14, no. 6, pp. 1739–1754,
2008.

[58] B. Caldwell, M. Cooper, L. G. Reid, G. Vanderheiden,
W. Chisholm, J. Slatin, and J. White, “Web content accessibility
guidelines (wcag) 2.0,” WWW Consortium (W3C), 2008.

[59] R. Rossi and N. Ahmed, “The network data repository with
interactive graph analytics and visualization,” in Twenty-Ninth
AAAI Conference on Artificial Intelligence, 2015.

[60] D. H. Kim, E. Hoque, and M. Agrawala, “Answering questions
about charts and generating visual explanations,” in Proceedings
of the 2020 CHI Conference on Human Factors in Computing Systems,
2020, pp. 1–13.

[61] C. Lai, Z. Lin, R. Jiang, Y. Han, C. Liu, and X. Yuan, “Automatic
annotation synchronizing with textual description for visualiza-
tion,” in Proceedings of the 2020 CHI Conference on Human Factors
in Computing Systems, 2020, pp. 1–13.

[62] B. Saleh, M. Dontcheva, A. Hertzmann, and Z. Liu, “Learning
style similarity for searching infographics,” in Proceedings of the
41st Graphics Interface Conference, 2015, pp. 59–64.

[63] M. Bostock, V. Ogievetsky, and J. Heer, “D3 data-driven docu-
ments,” IEEE transactions on visualization and computer graphics,
vol. 17, no. 12, pp. 2301–2309, 2011.

[64] J. D. Hunter, “Matplotlib: A 2d graphics environment,” IEEE
Annals of the History of Computing, vol. 9, no. 03, pp. 90–95, 2007.

[65] S. Van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne,
J. D. Warner, N. Yager, E. Gouillart, and T. Yu, “scikit-image:
image processing in python,” PeerJ, vol. 2, p. e453, 2014.

[66] Z. Tian, W. Huang, T. He, P. He, and Y. Qiao, “Detecting text
in natural image with connectionist text proposal network,” in
European conference on computer vision. Springer, 2016, pp. 56–72.

[67] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-
time object detection with region proposal networks,” Advances
in neural information processing systems, vol. 28, pp. 91–99, 2015.

[68] B. Shi, X. Bai, and C. Yao, “An end-to-end trainable neural net-
work for image-based sequence recognition and its application to
scene text recognition,” IEEE transactions on pattern analysis and
machine intelligence, vol. 39, no. 11, pp. 2298–2304, 2016.

[69] F. Böschen, T. Beck, and A. Scherp, “Survey and empirical com-
parison of different approaches for text extraction from scholarly
figures,” Multimedia Tools and Applications, vol. 77, no. 22, pp.
29 475–29 505, 2018.

[70] P.-T. De Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein,
“A tutorial on the cross-entropy method,” Annals of operations
research, vol. 134, no. 1, pp. 19–67, 2005.

[71] X. Li, X. Sun, Y. Meng, J. Liang, F. Wu, and J. Li, “Dice loss
for data-imbalanced nlp tasks,” in Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, 2020, pp.
465–476.

[72] R. L. Wilder, “Evolution of the topological concept of “con-
nected”,” The American Mathematical Monthly, vol. 85, no. 9, pp.
720–726, 1978.

[73] R. M. Haralick, S. R. Sternberg, and X. Zhuang, “Image analysis
using mathematical morphology,” IEEE transactions on pattern
analysis and machine intelligence, no. 4, pp. 532–550, 1987.

[74] B. Alper, B. Bach, N. Henry Riche, T. Isenberg, and J.-D. Fekete,
“Weighted graph comparison techniques for brain connectivity
analysis,” in Proceedings of the SIGCHI conference on human factors
in computing systems, 2013, pp. 483–492.

[75] K.-P. Yee, D. Fisher, R. Dhamija, and M. Hearst, “Animated
exploration of graphs with radial layout,” in Proc. IEEE InfoVis
2001, 2001, pp. 43–50.

[76] C. C. Gramazio, D. H. Laidlaw, and K. B. Schloss, “Colorgorical:
Creating discriminable and preferable color palettes for informa-
tion visualization,” IEEE transactions on visualization and computer
graphics, vol. 23, no. 1, pp. 521–530, 2016.

[77] C. Cook, F. Heath, R. L. Thompson, and B. Thompson, “Score
reliability in webor internet-based surveys: Unnumbered graphic
rating scales versus likert-type scales,” Educational and Psycholog-
ical Measurement, vol. 61, no. 4, pp. 697–706, 2001.

[78] M. Liu and F. G. Conrad, “Where should i start? on default values
for slider questions in web surveys,” Social Science Computer
Review, vol. 37, no. 2, pp. 248–269, 2019.

[79] F. Chollet et al., “Keras,” https://github.com/keras-team/keras,
2015.

[80] D. Zhou, J. Fang, X. Song, C. Guan, J. Yin, Y. Dai, and R. Yang,
“Iou loss for 2d/3d object detection,” in 2019 International Con-
ference on 3D Vision (3DV). IEEE, 2019, pp. 85–94.

[81] M. A. Rahman and Y. Wang, “Optimizing intersection-over-union
in deep neural networks for image segmentation,” in International
symposium on visual computing. Springer, 2016, pp. 234–244.

[82] Q. Wang, Z. Chen, Y. Wang, and H. Qu, “A survey on ml4vis:
Applying machinelearning advances to data visualization,” IEEE
Transactions on Visualization and Computer Graphics, 2021.

[83] L. Yuan, W. Zeng, S. Fu, Z. Zeng, H. Li, C.-W. Fu, and H. Qu,
“Deep colormap extraction from visualizations,” IEEE Transac-
tions on Visualization and Computer Graphics, pp. 1–1, 2021.

[84] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects
in context,” in European conference on computer vision. Springer,
2014, pp. 740–755.

[85] W. S. Cleveland, The elements of graphing data. Wadsworth Publ.
Co., 1985.

Sicheng Song received his B.Eng. from
Hangzhou Dianzi University, China, in 2019.
He is working toward the Ph.D. degree with
East China Normal University, Shanghai, China.
His main research interests include information
visualization and visual analysis.

https://github.com/keras-team/keras

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 17

Chenhui Li received Ph.D. from the Depart-
ment of Computing at Hong Kong Polytechnic
University, in 2018. He is an associate profes-
sor with the School of Computer Science and
Technology at East China Normal University.
He received ICCI*CC Best Paper Award (2015)
and SIGGRAPH Asia Sym. Vis. Best Paper
Award (2017). He has served as a local chair
in VINCI2019. He works on the research of in-
formation visualization and computer graphics.

Dong Li received her B.Eng. from Zhejiang Uni-
versity of Technology, in 2019. He received his
Master degree from East China Normal Univer-
sity, in 2022. His main research interests include
information visualization and visual analysis.

Juntong Chen received his B.Eng. from East
China Normal University, in 2022. He is work-
ing toward the Master degree with East China
Normal University, Shanghai, China. His main
research interests include information visualiza-
tion and visual analysis.

Changbo Wang is a professor with the School
of Computer Science and Technology, East
China Normal University. He received his Ph.D.
degree at the State Key Lab of CADCG of Zhe-
jiang University in 2006. He was a post-doctor
of the State University of New York in 2010.
His research interests mainly include computer
graphics, information visualization, visual Ana-
lytics, etc. He is serving as the Young AE of
Frontiers of Computer Science, and PC member
for several international conferences.

