
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

VividGraph: Learning to Extract and Redesign
Network Graphs from Visualization Images

Sicheng Song, Chenhui Li, Yujing Sun, and Changbo Wang

Abstract—Network graphs are common visualization charts. They often appear in the form of bitmaps in papers, web pages,
magazine prints, and designer sketches. People often want to modify graphs because of their poor design, but it is difficult to obtain
their underlying data. In this paper, we present VividGraph, a pipeline for automatically extracting and redesigning graphs from static
images. We propose using convolutional neural networks to solve the problem of graph data extraction. Our method is robust to
hand-drawn graphs, blurred graph images, and large graph images. We also present a graph classification module to make it effective
for directed graphs. We propose two evaluation methods to demonstrate the effectiveness of our approach. It can be used to quickly
transform designer sketches, extract underlying data from existing graphs, and interactively redesign poorly designed graphs.

Index Terms—Information visualization, Network graph, Data extraction, Chart recognition, Semantic segmentation, Redesign

✦

1 INTRODUCTION

N ETWORK graphs (hereinafter called graphs) are
popular and primary forms for information visual-

ization that can clearly visualize various types of graph
data [1, 2, 3]. The results of graph visualization usually
appear in the form of static images in websites, papers,
magazines, and other printed matter. We may need to
obtain the original graph data in many cases, such as
updating the graph data, recoloring or relaying out the
graph. However, due to the lack of original code and
design files, it is difficult to obtain original network data.

There are some methods for solving this problem,
such as information steganography [4], pattern recogni-
tion, and statistical analysis. Information steganography
needs to write the original data into the image in
advance, so it is not effective for a large number of
existing images. In addition, the information steganog-
raphy steps are complicated, and statistical analysis
performance is not satisfactory. Therefore, the common
method is pattern recognition [5, 6, 7, 8]. These data
extraction methods focus on simple charts, such as
bar charts, line charts, radar charts, and heat maps.
However, none of these methods can solve the graph
data extraction task. Extracting the underlying graph
data is challenging. First, it is difficult to label the graph
datasets, and there is no public corpus. Second, the
dimension of graph data is higher than that of bar charts
or pie charts, which makes data regression difficult.
Third, the graph edges are difficult to extract.

We introduce VividGraph, a pipeline for automat-
ically extracting and redesigning graphs from static

• Sicheng Song, Chenhui Li, Yujing Sun, and Changbo Wang are
with the School of Computer Science and Technology, East China
Normal University, Shanghai, China. E-mail: chli@cs.ecnu.edu.cn, cb-
wang@cs.ecnu.edu.cn.

Manuscript received xx xx, 2020; revised xx xx, 2020.

images. VividGraph integrates the classification of di-
rected graphs and undirected graphs, node extraction
and links, and the algorithm to calculate topological
relations and interactive chart redesign. Inspired by
Haehn et al. [9], we generate directed and undirected
graph datasets with pixel-level labels to train the deep
learning module in our pipeline. We classify a graph
into a directed graph or an undirected graph through
a classification neural network. Then, we obtain the
node and link pixels through the semantic segmentation
network. Finally, we reconstruct the topological relation
of the nodes through calculation. Following the data
assumptions of existing chart extraction work [8, 10],
we make precise definitions on the scope of our work:
VividGraph assumes that the graph has no text, and
the nodes are circular. The nodes do not overlap, and
the edges are straight. In our user study, 91.23% of
the participants agree with the scope of our work and
believe that the graph in this paper is common in the
real world. Our training data overcome the difficult
task of labeling real data and enable the model to have
a good generalization ability. The easy morphological
method [8] cannot handle the inconsistent node size.
Small nodes will be eroded. Our semantic segmentation
network can robustly detect many types of graphs.

We demonstrate our recognition accuracy from struc-
tural similarity and image similarity. Our method is
robust enough to solve the recognition of a variety
of graphs, such as directed graphs, undirected graphs,
hand-drawn graphs, printed graphs, and graphs from
the D3 library [11] and E-charts [12] gallery. The ex-
tracted data can be used to help designers quickly
transform their ideas into interactive graphs. They can
also easily redesign and modify graphs with poor design
or outdated data.

Our work makes the following contributions:
(1) We first propose using convolutional neural net-

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2

Input

Bitmap

Retarget

Vector

D3

E-charts
Recolor Re-layout Modification

Fig. 1. VividGraph can be used in many practical ap-
plications. The input is a bitmap. Through our semantic
segmentation and connection algorithm, we can obtain
its underlying data. Using the extracted data, we can re-
construct the vector of the graph and redesign the chart,
such as recoloring, re-layout, and data modification.

works to solve the problem of graph data extraction.
(2) We propose a pipeline with semantic segmentation

to accurately identify the characteristics of graphs.
The method is robust to hand-drawn graphs, blurred
images, and large images.

(3) We propose two methods to evaluate the effective-
ness of our methods through structure similarity and
image similarity.

2 RELATED WORK

Our work is related to three technologies: chart ex-
traction, graph perception with CNNs (Convolutional
Neural Networks), and chart interaction.

2.1 Chart Extraction
Some inverse visualization studies extract data from
charts. Harper et al. [13] proposed a method for extract-
ing underlying data from a visualization chart built with
the D3 library [11]. This method depends on web page
code, such as HTML and SVG. The extracted data can be
used for chart redesign or color mapping redefinition.
WebPlotDigitizer [14] is another graph data extraction
tool based on web pages. It can extract four types of
graph data, including bar charts, line charts, pole charts
and ternary charts. However, the accuracy of this tool is
not high, and users generally add information manually
to improve accuracy. Another tool called Ycasd [15]
requires the user to provide the position of all points
on the line to extract the line chart data.

Static bitmaps are encountered more often. There are
some studies based on image processing and machine
learning to solve the problem of data extraction in
bitmap charts. ReVision [6] is a data extraction frame-
work for bitmap charts, which automatically divides
charts into ten categories and focuses on data extraction
for pie charts and bar charts. FigureSeer [7] focuses
on extracting data from line charts. Poco et al. [8, 16]
proposed a data extraction method with legends and
extend the research to heat maps. They focused on the
role of the legend text in the charts and added an OCR
module to solve the data extraction problem for charts
with legends. Zhou et al. [17] proposed a network with

an attention mechanism to detect bar charts, in which
deep learning techniques have been well applied.

Some researchers have focused on the method of
semiautomatically extracting bitmap chart data. Jung et
al. [5] introduced ChartSense, a system to increase the
data extraction accuracy by manually adding informa-
tion. DataThief [18] is another semiautomatic tool for ex-
tracting data from line charts. The users need to provide
information such as the coordinates of the start point
and endpoint of the line and the positions of the hor-
izontal and vertical axes. iVoLVER [19] integrates data
extraction of bitmap images and SVG objects on the web,
providing a semiautomatic data extraction framework.
These semiautomatic methods rely on a large quantity
of user interaction data, such as specifying the data type
(e.g., color and shape) and providing the dividing line
location. While improving data extraction accuracy, it
also reduces efficiency and requires considerable manual
intervention. However, to the best of our knowledge,
these frameworks do not support data extraction and
redesign of graph bitmaps.

2.2 Graph Perception with CNNs
Haehn et al. [9] reproduced Cleveland and McGill’s [20]
graphic perception evaluation experiment with CNNs.
They compared the recognition capabilities of four net-
works, MLP, LeNet [21], VGG [22], and Xception [23],
on nine basic perception tasks. They presented that
the graphic perception ability of VGG19 is the best
among these networks. They proposed that graphs are
advanced graphical coding, so the task of extracting
data from graphs is challenging. Haleem et al. [24]
evaluated the readability of force-directed graph lay-
outs with CNNs. Giovannangeli et al. [25] continued
this experiment and used CNNs to evaluate the image
perception ability of graphs. However, their evaluation
task indicators were only the number of edges, nodes
and maximum degree of the graph, not the topological
relations, the most critical data in the graph.

These pattern recognition methods all regress the
graph numerically. The graphs are too complex to make
these methods feasible. Therefore, we thought of the
semantic segmentation method, a method commonly
used in the field of computer vision for natural images.
The fully convolutional network (FCN) [26] was the
earliest method to obtain segmentation results equal to
the input image size through a series of convolutional
layers and deconvolution. SegNet [27] is similar to FCN.
While deepening the network, it uses pooling indices to
save the contour image information. PSPNet [28] uses
a pyramid pooling module to simultaneously feed the
feature map through four parallel pooling layers. It then
obtains and upsamples four outputs of different sizes.
These semantic segmentation networks are applied to
natural image data, such as VOC datasets. Deep fea-
ture extraction networks cause the target to lose small
features, leaving basically correct segmentation results.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 3

Node

ID

Color

Coordinate

Radius

Edge

ID

Width

Color

BackColor

GraphType

ArrowColor

Undirected Graph

Directed Graph

Node Edge Back

Arrow

Layout Redesign
Color Redesign

Data Modification
Representation Change

Source & Target

Data Source Classification Segmentation Reconnect Redesign

Undirected Graph

Directed Graph

Printed Chart

Large Network Graph

Hand-drawn Chart

Blurred chart

Fig. 2. The VividGraph pipeline includes five steps: (1) input a graph image, (2) classification of directed and
undirected graphs, (3) semantic segmentation network, (4) algorithm to reconnect the nodes, and (5) interactive
chart redesign.

However, for graph images, these small features, such
as edges, are important. The network parameters need
to be simplified compared to natural images.

2.3 Chart Interaction

Chart redesign can maximize the value of the original
data and help readers understand these data quickly
and accurately. [29] Good chart visualization is made
up of a clear-sighted layout, easily distinguishable color
scheme and interactive application scenarios. First, the
layout gives readers the first impression of a chart.
Takayuki et al. [30] combined a force-directed layout
with a hybrid space-filling method to simultaneously
represent both connectivity and categories of multiple-
category graphs. Arc diagrams [31] were proposed to
display complex patterns of string data with overlap-
ping parts. Ka-ping et al. [32] added animation tech-
niques to radial layouts so that users can interactively
explore the dynamic evolution of topological relations.
Second, the similarity and comparison of color schemes
help readers understand directly. Lujin Wang et al. [33]
used a knowledge-based system to learn color design
rules and apply them to illustrative visualization. Jorge
et al. [8] extracted color encodings from a heatmap
and recolored it with different color schemes to make
the heatmap more comprehensible. Third, deeper in-
formation can be acquired by interactive operations.
Thinkbase and Thinkpedia [34] are used to excavate
semantic graphs with interactive operations of large
knowledge repositories so that web content can be
explored more easily. NR [35] provided an interactive
database used for visual interactive analytics based on
the web. Lai et al. [36] combined the chart extraction
technology of bar charts and pie charts with natural
language processing technology and proposed a visual
interactive automatic annotation method. Kim et al. [37]

proposed a pipeline that can answer questions about the
chart.

3 METHODS

The extraction of graphs faces three major problems: it
is difficult to label the data set, the topological relation is
large. If a graph has n nodes, there will be n2 topological
relations. The traditional method [25] has difficulty ex-
tracting edges. Therefore, we establish a graph data set
with automatically generated pixel labels and propose
VividGraph to automatically extract the data of graphs.
VividGraph is a framework composed of four modules:
(1) classification of directed and undirected graphs, (2)
semantic segmentation network, (3) algorithm of node
reconnection, and (4) interactive chart redesign. First,
we classify the graph into a directed graph and an
undirected graph so that the second step uses different
parameters for data extraction. Second, VividGraph uses
a semantic segmentation network to locate the node and
edge pixels. Third, we design an algorithm to reconnect
these nodes, which can calculate topological relations.
Fourth, VividGraph uses the extracted data to redesign
graphs according to user needs.

3.1 Training Dataset Generation

Considering that our data extraction algorithm uses a
semantic segmentation neural network, we need graph
datasets with pixel-level labels. We classify pixel labels
into three categories, including background, nodes, and
edges. When we obtain the category of each pixel, we
can calculate all network attributes including relation,
node size, edge width (thickness), color, etc. However,
it is difficult to label the graphs generated by common
visualization frameworks with pixels. Inspired by some
studies [9, 10, 38] using image synthesis as datasets,

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 4

0

50

100

150

200

250

300

350

400

3 8 13 18 23 28 33 38 43 48

(a) Node

0

50

100

150

200

250

300

350

400

0 5 10 15 20 25 30 35 40 45

(b) Edge

0

100

200

300

400

500

600

700

800

0 5 10 15 20 25

(c) Maxdegree

Fig. 3. The data distribution of our training set. The
horizontal axis is the number of nodes (a), the number
of edges (b) and the maximum degree (c). The vertical
axis is the number of images.

we provide a graph data generator for inverse visual-
ization study of graphs, which can automatically mark
the category of each pixel. This generator can control
the number, color and size of nodes, the width (thick-
ness), number and color of edges, the color and size
of the background, and the type of directed graph or
undirected graph. The pixels in the graph are detected
as background, node, edge, and arrow (only for the
directed graph).

The generator was made using Python tools and the
Skimage module [39]. The image size is 320 × 320. The
number of nodes is random between 0 and 49. The
node size is random between 6 and 15 to ensure that
the nodes do not overlap. To make our model robust
to various layouts (e.g., force-oriented or circular), we
randomly select node positions so that the model can
learn various layouts. We add conditions in the process
of generating nodes. If the generated node overlaps with
other nodes, it will be re-randomized until it does not
overlap with other nodes. The edge width (thickness) is
random between 1 and 6. The colors of the background,
nodes and edges are all random between (0,0,0) and
(255,255,255). The random attributes can vary in a single
graph.

We first generate nodes on the image and then ran-
domly select two nodes to connect to generate edges.
The graphs generated in this way can cover different
graph families, but it also has some limitations. Giovan-
nangeli et al. [25] proposed a data generation limitation.
Randomly selecting the number of nodes causes the
graph density distribution and the number of edges in
the dataset to follow a power-law distribution. To avoid
overfitting, we increase the control of the maximum
degree and the number of edges in the process of
random generation. As shown in Figure 3, the number
of edges and graph density in our dataset are uniformly
distributed.

We generate 15,000 undirected graph images as the
training set and 5,000 undirected graph images as the
validation set. Then, we add arrows to all images to
generate a directed graph image. The width of the arrow
is randomly from 1 to 5, and the length of the arrow is
randomly from 1 to 5. We obtain 15,000 directed graph
images as the training set and 5,000 directed graph
images as the validation set. We generate a total of

40,000 visualization images, of which 30,000 are used
as the training set and 10,000 as the validation set.

3.2 Graph Classification
Our pipeline can also solve the directed graph data
extraction problem. To obtain the extraction results more
accurately, we first classify the input images. We use
a convolutional neural network (CNN) to build this
module. CNN is one of the methods commonly used
for image classification in the field of image processing
and has been proven to have good performance [40] on
the famous ImageNet dataset [41]. We tried the VGG19
model, which has been proven to have good graphical
perception ability [9]. However, we found that it did
not perform well on the graph classification task. We
also tried the shallower network LeNet-1, and it also
appeared to underfit. We compared the effects of Incep-
tionV3, ResNet-101 [42], and Xception. The classification
task results of the three networks are shown in Table 1.
Finally, we choose InceptionV3 [43] among many CNN
models.

The complete neural network of the system is shown
in Figure 4. The classification network and the semantic
segmentation network can be trained together or sepa-
rately. We additionally generated 1,000 directed graphs
and 1,000 undirected graphs for evaluation. The total
accuracy was 99.65%. We normalized the input image to
224× 224× 3 dimensions (sRGB space). We chose an ef-
ficient stochastic gradient descent (SGD) optimizer [44].
The initial learning rate was set to 0.001, and it decreased
dynamically every 5 epochs.

TABLE 1
Performance comparison of different models in graph

classification tasks

Model Parameters Accuracy
Directed Undirected Total

VGG19 144 M 50.3% 50.1% 50.2%
Xception 22.8 M 99.3% 99.5% 98.9%

InceptionV3 23.6 M 99.5% 99.8% 99.65%
ResNet-101 44.7 M 88.4% 99.2% 93.8%

After graph classification, the output graph has three
types of labels (for undirected graphs) or four types of

Inception Linear, SoftmaxConv, ReLU

Classification Extraction

Fig. 4. VividGraph contains two neural network models:
a classification network and a semantic segmentation
network.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 5

a

𝑂𝑂𝑖𝑖

𝑅𝑅𝑖𝑖

𝐴𝐴 ≥ 𝛾𝛾

𝐶𝐶back

𝐴𝐴 < 𝛾𝛾

𝐶𝐶𝑖𝑖1,𝑖𝑖2
𝑗𝑗

𝐶𝐶𝑖𝑖

b c

Fig. 5. Illustration of the semantic segmentation and
reconnection algorithm. In (b), white pixels indicate that
the pixels are detected as background, blue pixels are
nodes, and orange pixels are edges. There are noise
pixels detected as edges near the nodes, but it does not
reduce the efficiency of our algorithm.

labels (for directed graphs).

3.3 Semantic Segmentation Network
Giovannangeli et al. [25] noted that it is difficult to rec-
ognize edges with traditional image processing methods
and evaluate the possibility of using CNNs to perceive
the network. However, their evaluation task indicators
were only the number of edges, nodes and maximum
degree of the graph. Therefore, they could not extract
the topological relation in the images. Many inverse
visualizations in the past were based on simple visual
coding, and their attributes were often relatively simple.
For example, the attribute of bar charts is the length of
the bar, the attribute of scatter graphs is the coordinate
value of a point, and the attribute of point cloud graphs
is the number of points. As a high-level visual coding,
the attributes of networks are not only the size, location,
and number of its nodes but also the relations of these
nodes. If using the adjacency matrix of the graph as
the annotations for training, the data extraction task
becomes a deep learning regression task. This method
is unrealistic, and the regression data dimension is too
large. Therefore, we split the data extraction task into
two parts. The first part uses the semantic segmentation
network to locate the nodes and edges, and the second
part reconnects the nodes through our algorithm.

In traditional convolutional neural networks, an input
image often has only one output label. However, in
a semantic segmentation network, each pixel has an
output label. In this task, we use the elements of the
graph as pixel-level labels (background, node, edge).
We choose U-Net [45], a semantic segmentation con-
volutional network applied to medical images, as our
semantic segmentation network model. We normalize
the image to a dimension of 320× 320× 3 (sRGB space).
We choose VGG16 as the U-Net backbone network. We
use the popular deep learning framework Keras [46] to
quickly implement our model.

3.4 Reconnection Algorithm
When we obtain the pixel-level label output by the
semantic segmentation network, we design an algorithm

to reconnect nodes to calculate the topological relation
of the graph. First, we extract the connected components
labeled as nodes in the image. We perform an erosion
operation on these connected components to remove
noise, where the size of the kernel is determined by the
area of the connected components. Erosion and dilation
are two fundamental morphological operations of image
processing [47]. Then, we use the same size kernel to
perform a dilation operation on the connected com-
ponents to maintain the node radius. These connected
components are the nodes of the graph.

• W,H : image width and height
• Cx,y : input image color, storing 3D data (R,G,B).

• Labelx,y =

0, back
1, node
2, edge

:semantic segmentation results

of pixels located at (x, y)
• Oi, Ri: center coordinate and radius of Node i
• Cj

i1,i2
: color of Edge j

• CC: Connected Component
• Areai: rectangular area surrounding CC i
• k: erosion or dilation operation core size
• γ: threshold of edge pixels between two nodes

Algorithm 1 Node Reconnect Algorithm
Input: {Cx,y|x ∈ [0,W], y ∈ [0, H]},
{Labelx,y|x ∈ [0,W], y ∈ [0, H]}

Output: Oi, Ri, C
j
i1,i2

Extract the CC of Labelx,y = 1
for all CC do

k = 1
3 ×

√
Areai

Use (k, k) size kernel to perform morphological
opening on CC
end for
Extract CC again
for all CC do

Oi =The coordinates of the center pixel of CC
Ri =

1
2 ×

√
Areai

end for
for each Node i1 and Node i2,i1 ̸= i2 do

Draw an line connecting Node i1 and Node i2
Check A = {(x, y)|Labelx,y = 2, (x, y) ∈ line}
Perform dilation operation
Set γ ∝ lengthline

if |A| > γ then
Node i1 and Node i2 are connected
Cj

i1,i2
= ¯Cx,y, (x, y) ∈ A

end if
end for
return Oi, Ri, C

j
i1,i2

;

We draw a line between every two nodes to check the
number of pixels detected as edges on this line. If the
number of such pixels exceeds the threshold, the two
nodes are considered to be connected. The size of the
threshold is proportional to the length of the line. The

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 6

result of semantic segmentation and the process of the
reconnection algorithm are shown in Figure 5.

With the advantages of deep learning methods, our
method can detect edges with various widths. After
reconnecting all nodes, we calculate the width of each
edge. We calculate the average distance from the pixels
detected as the edge category near an edge to the edge,
and the width of this edge is twice this distance.

We also generate a set of data with edges of differ-
ent widths (thicknesses) to evaluate our algorithm for
extracting edge width. The dataset is generated by the
D3 library, containing 100 images with the resolution of
480× 480. The correct rate of edge width is 70.76%.

The graph colors are important. The color of edges
Cj

i1,i2
is mentioned in Algorithm 1. We take the color

of the center pixel of each node as the node color.
The average color value of the pixels recognized as the
background category is taken as the background color
Cback.

Many real graphs do not have a good colormap,
which prevents users from clearly observing the re-
sults. We also add the contrast comparison between the
foreground and background colors and the background
color recommendation in the color extraction to comply
with W3C standards [48]. Many real-world graphs have
poor designs, making readers unable to see the nodes
or edges clearly. We calculate node color averages and
edge color averages. We then calculate their average
as the foreground color Cfore and give them the same
importance. The number of edge pixels is generally less
than the number of node pixels, but when calculating
color contrast, the edge color is as important as the node
color. We use Cback as the background color. First, their
brightness is calculated and then contrast is calculated. If
the contrast is lower than 7:1, the chart does not comply
with the W3C standard. We choose the color with the
highest contrast to replace the background color from
the safe colors preset by W3C. In the sRGB space, the
definitions of color brightness and contrast are shown
in Equation 1. Ci is the color of node i, and Cj

i1,i2
is the

color of the edge connecting node i1 and node i2. We
assume that there are n nodes and m edges here. Cw is
the contrast color of the foreground and background. l
is the luminance of the color. l1 represents the brighter
of the foreground and background colors, and l2 is the
other.

Cfore =
1
2n

∑n
i=1 Ci +

1
2m

∑m
j=1 C

j
i1,i2

l = 0.2126R+ 0.7152G+ 0.0722B

Cw = l1+0.05
l2+0.05 , l1 > l2

(1)

3.5 Directed Graph
For directed graphs, their label categories increase from
three to four (background, node, edge and arrow). The
arrow category is used to determine the direction of the
edge.

We take the coordinates of the midpoint of the two
nodes and draw a segment with each of the two nodes.

a b c

Blank
Fragment

d

Fig. 6. Illustration of large graph data extraction. In (b),
we crop the input image into several equal pieces. In (c),
we extract data from each piece separately. In (d), we
reconnect the nodes in a large matrix.

Then, we check the pixels detected as arrow categories
on the two segments. The segment with more pixels
connects the target node. This method is suitable for
directed graphs where most arrows are near the target
nodes.

3.6 Large Network Graph
VividGraph is also suitable for large graphs with high
resolution. When the resolution of a picture is high
(more than 4096 × 4096), we can crop the picture and
extract data from each part separately. We put each part
of the extracted data into a large matrix and then use
Algorithm 1 to reconnect the nodes. To improve the
algorithm efficiency, we do not calculate blank image
fragments that do not contain node-type and edge-type
pixels. If the line connecting two nodes passes through
these blank fragments, then the two nodes are definitely
not connected, and there is no need to perform the
connection determination. This method can effectively
solve the error caused by convolution when the semantic
segmentation network has only 320 × 320 dimensional
input for large graphs with dense nodes. The steps in
this method are shown in Figure 6.

We generate 100 large graph images by D3 library. The
number of nodes in each graph is around 100, and the
resolution is 8000×8000. The average time consumption
without the algorithm is 6.05 seconds. The average time
consumption with this algorithm is 2.37 seconds. Time
efficiency increased by 60.83%.

4 APPLICATION

VividGraph can be applied to different kinds of scenar-
ios, such as converting sketches into electronic charts,
obtaining original data and visualization retargeting.
The specific examples generated by D3, E-charts and
AntV are implemented on a PC with an Intel Core i5-
10400F CPU and 32 GB of memory. We use an NVIDIA
GTX1080Ti, 11 GB memory to train our model.

4.1 Quick Realization of Sketches
Network graphs are widely used in our daily work.
Enterprise staff need to use graphs to clearly present the
complex relations of different areas. Teachers who teach
computer science need to vividly explain complicated
graph algorithms with graphs. Designers usually add

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 7

graphs in their works to enhance aesthetic feelings.
However, most of these people are not familiar with
visualization tools such as E-charts, D3 and AntV, so
it is difficult for them to generate electronic graphs.

To solve these problems, VividGraph provides a pow-
erful function that converts graph sketches into elec-
tronic charts accurately and quickly. Users only need
to draw a graph on a piece of paper with colored pens,
take a picture of the sketch and upload this picture to
VividGraph. After these steps, VividGraph extracts the
sketch accurately and shows users a graph on the web
that can be saved as a clear image.

A company’s network administrator, who is respon-
sible for the design, management, and maintenance of
computers and networks, often needs to draw a sketch
of the company’s network connections. She or he can
simply draw the network structure connecting the com-
puters on paper and then use VividGraph to turn it
into an interactive graph for modification. As shown in
Figure 7(a), the designer uses blue nodes to represent
the internet, pink nodes to represent routers, orange
nodes to represent firewalls, red nodes to represent
switches, yellow nodes to represent servers, and purple
nodes to represent personal computers. Our method
is robust enough to deal with various types of hand-
drawn graphs, even if noise is accidentally introduced
when taking pictures. It is common for the designer to
introduce shadows when taking pictures, as shown in
Figure 7(c). The shadow noise present more challenges
for semantic segmentation. Our semantic segmentation
model and Algorithm 1 can still obtain the correct
result of relations. However, since the node color in
the original image is a shaded color, our algorithm also
extracts a shaded color instead of the real color of the
node. Our evaluation and user study both include this
type of sketches.

4.2 Extraction of Underlying Data
In scientific research, the reuse of previous research re-
sults facilitate reproducibility and open science. Graphs
published in books or papers always contain complex
relations, such as social networks and knowledge maps.
To make full use of data embedded in these existing
graphs, VividGraph can identify the topological relation
of the graph and generate the corresponding JSON file.
Additionally, it shows a new graph on the web and
allows users to operate on it.

To obtain underlying bitmap data, users take a picture
or a screenshot of a graph on papers and upload the
image to VividGraph. After that, on the one hand, users
can download the generated JSON file directly to obtain
the underlying data of the graph. On the other hand,
users can obtain the vector of the graph by E-charts, D3
or AntV. Based on the vector, users can perform some
operations to change the network, such as adding new
nodes and links, deleting useless nodes, and changing
their position.

(a) Sketch (b) Reconstruction Result

(c) Sketch with Shadow

2021/6/22 0001.svg

file:///D:/download/0001.svg 1/1

(d) Reconstruction Result

Fig. 7. The reconstruction result of computer network
sketches. The reconstruction results have some bias in
color, but the topological relation and position are robust.

(a) Input (b) Output

(c) Overlap

Fig. 8. The result of extracting the underlying data of the
graph in the paper [49].

Neural network zoo [49] uses graphs to clearly and
vividly summarize neural networks in recent years. We
notice that many readers requested graph SVGs on the
author’s blog to help with their research, but the author
only has bitmap data. We input one of the network
pictures in this paper into VividGraph. The output are
shown in Figure 8(b). The output image is almost the
same as the input image (SSIM [50] = 0.8414), which
proves that our extraction is accurate. We overlap the

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 8

input image and output image to show the difference
more clearly. As shown in Figure 8(c), there is a slight
offset in the positions of the node and the edge, the
color of the edge has little bias, and other results are
completely correct.

Shutterstock is a global picture market open to artists
and creators. We select some design pictures related to
the graph and put them into VividGraph, as shown in
Figure 9(a). Our system can also restore some blurred
graphs. Figure 9(b) is the result of data extraction and
reconstruction of a chart with a resolution of 160× 160,
which is an obviously blurred graph from the Google
image search system. When a directed graph appears,
VividGraph automatically classifies the graph, uses the
parameters of the directed graph to perform semantic
segmentation, and obtains accurate results, whose re-
sults are shown in Figure 9(c).

VividGraph can also extract the underlying data of
large graphs. Figure 10 shows large graphs from the
D3 gallery, which have a large number of nodes and
dense edges. In the red box, because the edges are dense,
the output has more edges than the input. In the blue
box, due to insufficient pixels in the segmentation result,
the output has fewer edges than the input. Despite
some minor differences, the topological relations of most
networks were accurately extracted. We also conduct
a user study in Sec. 5, and most of the users indicate
that these minor errors can be accepted in large-scale
network extraction. Users gave the topological relations
of the large network a score of 85.12 (out of 100). The
real world corpus in Figure 14 includes large network.
In addition, we provide the interaction of adding and
deleting nodes and edges in the system, and users can
also eliminate errors through this interactive operation.

4.3 Visualization Redesign
Many existing graphs have poor designs because they
are not designed by professional visualization workers.
VividGraph provides automatic and interactive chart

Input Input Input

Output

(a) Shutterstock

Output

(b) Blurred

Output

(c) Directed

Fig. 9. The results of extracting the underlying data of the
graphs on the internet. The first row is the input bitmap,
and the second row is the output vector reconstructed
from the extracted result.

(a) Input

(b) Segmentation Result

(c) Output

Fig. 10. The reconstruction results of large graphs.
VividGraph can extract complex networks with dense
nodes and edges. We show some details in the lower
right corner of each picture. We also label some errors in
the figure.

redesign functions, including recoloring, re-layout and
data modification. Color plays a crucial role in visu-
alization. Some poor color schemes make people feel
unpleasant and even make it impossible for people
with color weakness or color blindness to obtain the
chart characteristics. We show the recoloring results of
low-contrast graphs in Figure 11(b). We can see that
VividGraph also has good performance on graphs with
similar nodes, edges and background colors.

To make it easier for users to access the graph infor-
mation, the graph has many different kinds of repre-
sentations, such as a tree, force-directed layout, radial
layout, circle layout, and grid. The force-directed layout
is one of the most basic graph layouts. The layout
algorithm exerts a repulsive force between any two

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 9

Input Input Input

Output

(a) Re-layout

Output

(b) Recolor

Output

(c) Modification

Fig. 11. Redesign of graphs. In (a), we convert a graph
into adjacency matrix respectively. In (b), we recolor a
graph with poor color design. In (c), we modify a neural
graph node connection relation.

nodes and an attractive force between two linked nodes.
All nodes are evenly distributed across the screen to
achieve an ”aesthetically pleasing” presentation [51].

The adjacency matrix performs better than the net-
work layout in terms of weight variation and connec-
tivity tasks [52, 53]. In particular, compared to network
representation, the adjacency matrix shows the relations
between nodes clearer, especially when the number of
links in the graph is large [54], which is called a dense
graph. For example, there is a technical department
that consists of employees in different positions, such
as product managers, software development engineers,
and test engineers. As shown in Figure 11(a), each node
in the graph represents an employee, and each link
represents a cooperation project between employees.
The department manager needs to count the projects
that every employee has participated in to assign new
project tasks. The department manager has to count the
links one by one with the network in the node-link
graph, while he or she only needs to count nonempty
cells row by row to obtain the degree of each node in
the adjacency matrix.

To adapt to changeable application scenarios, Vivid-
Graph also provides some node and link operations
for users. Users can add a new node with a specified
radius and color and put it anywhere on the canvas or
delete any existing node. Additionally, it allows users
to add links between nodes with any color or delete
any existing link. Through these operations, the designer
or researcher can modify the bitmap of the existing
graph instead of drawing the graph from scratch, which
improves efficiency. In Figure 11(c), we show the mod-
ification of an existing neural graph to another neural
network.

5 USER STUDY

To improve the user experience of VividGraph, we
conducted some user studies. We obtained feedback

through user interviews and questionnaires after using
the system in actual scenarios. We interviewed three
types of people: professional designers, people who are
not proficient in computers, and scientific researchers.

Procedure: Our investigation is divided into five
steps: (1) user screening and informed consent, (2) sys-
tem introduction, (3) questionnaire survey, (4) actual
use of the system, and (5) interview. We first obtained
informed consent from the participants and classified
the participants by occupation. After introducing the
VividGraph functions in detail, we conducted a ques-
tionnaire survey to evaluate the effectiveness of our
method through user points. After that, users tried
our system to complete some work tasks related to
their careers, and we obtained user feedback through
interviews.

Recruitment: We recruited 60 participants, including
professional designers (more than 2 years in the indus-
try), scientific researchers in the computer field, and or-
dinary workers who are not majors in computer science.
We excluded the data of 3 participants because they did
not understand the system. We analyzed the data of the
remaining 57 participants (µage=28.7 years of age, 33
computer professionals, 24 noncomputer professionals)
and obtained feedback through interviews.

Questionnaire: We designed 20 questions to evaluate
the effectiveness of our method. We designed 14 ques-
tions for participants to score the extraction results. The
results were extracted from hand-drawn graphs, images
from Shutterstock, images from the D3 library, images
from academic papers and large graphs. Participants
scored from four aspects: color, node location, node
radius, and topological relation by a rating slider. This
slider was initially set to 0, and the user could move
the slider to the maximum value of 100, which repre-
sents the degree of satisfaction with the reconstruction
results in this aspect. The scoring result is shown in
Figure 12. Our average score was 89.09, indicating that
participants were generally satisfied with our extraction
performance. Some graphs in bitmap format saved on-
line were blurred due to compression or transmission.
We present two sets of blurred graph results extracted
and reconstructed by the system; 80.7% of participants
thought the output results were clearer. The next 4
questions were the results of re-layout or recoloring
graphs with poor design, allowing participants to judge
whether the graphs helped them more rapidly obtain
the characteristics of graphs, 92.99% of the participants
thought it was easier to obtain the characteristics of
the recolored graph. 59.65% of the participants felt that
the relayout of the adjacency matrix obtained features
visually faster. When the graph was close to the fully
connected graph, this ratio increased to 73.68%. The
results indicated that 91.23% of participants thought the
images given in this questionnaire were common graphs
in the real world, and 96.49% thought VividGraph could
help them with their daily study or work. The ques-

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 10

tionnaire data have been included in the appendix for
further study.

(a) (b)

60
70
80
90

100
Color

Position

Node
Radius

Topologic
al Relation

Edge
Thickness

Fig. 12. The questionnaire scoring results. The maximum
score is 100. In (a), Our topological relation and location
extraction results are more satisfactory. The extraction of
node size, edge thickness and color is basically accurate,
but still needs improvement. In (b), the graphs from
D3 library have the most satisfactory performance. The
sketch has room for improvement due to some color bias.

Interview: After the survey, we invited participants to
use our system to solve some actual problems in their
work. We obtain their feedback through interviews to
improve the system. We divide the feedback into three
categories according to the user’s occupation. Ordinary
people who are not computer majors think it is helpful
to convert hand-drawn graphs into images. In the in-
terview, a middle school teacher who teaches natural
sciences and a primary school teacher who teaches
mathematics both stated that graphs often appear in
elementary education. When they need to make course-
ware and examination papers, their electronic drawing
ability is so weak that they spend considerable time
drawing graphs. They proposed enhancing the accuracy
and robustness of hand-drawn graph extraction.

Professional designers feel that the function of con-
verting hand-drawn graphs into images is not practical.
They can use drawing software proficiently, and the
time consumption of hand drawing is greater than
drawing directly on the computer. However, they find
it helpful to convert existing graphs into vectors. They
need to use materials found on the internet in their
design work. The quality of these materials is uneven,
many of which are bitmaps. They proposed the need
for more professional automatic color schemes and more
customized data modification options, such as node size,
node color, edge color, and edge width. After adding
some customization options to the system, we again
invite these professional designers to use the system.
They also proposed adding some functions to improve
the human-computer interaction experience, such as
color-picking pens, auxiliary design lines, and canvas
changes. Embedding our system into drawing software
on iPads or professional drawing software can also be
considered. In the future, we will continue to explore
this direction.

The last group of people is scientific researchers. They
are as proficient in computer software as designers.
However, their demand lies more in quoting and mod-

ifying graphs in papers. Most of the existing graphs in
the paper are bitmaps or sketches. In these interviews,
more than half of the studies were related to deep
learning. When modifying other neural network struc-
tures(e.g. change Inception V1 to Inception V2), they can
save drawing time by using VividGraph. In addition,
many researchers are not specialized in visualization.
Our system can also help them generate graphs with
reasonable layout and color matching, making the charts
pleasant and easy to obtain features. This type of user
feedback was the most positive feedback among the
three types of users. They also hoped that some auxiliary
interactive functions can be added in the future.

6 PERCEPTUAL EVALUATION

We propose two methods to prove the effectiveness of
our method. The first method is NetSimile [55], which
is proven to be a scalable and effective method for
measuring the structural similarity between two net-
works. NetSimile features integrate the degree of nodes,
clustering coefficient, two-hop away neighbors, ego net,
etc. It generates a 35-dimensional signature vector from
the average, median, and standard deviation of these
features. It defines the similarity of two networks by
the Canberra distance of two signature vectors. Given a
graph signature vector xi and the other graph signature
vector yi, where i = 1, 2, 3..., 35, the Canberra distance
between xi and yi is defined as:

35∑
i=1

∥xi − yi∥
∥xi∥+ ∥yi∥

(2)

The lower the Canberra distance is, the more similar
the two networks. This method does not require a one-
to-one correspondence of nodes between the two net-
works. Therefore, when there are missing nodes in our
evaluation experiment, we can still output evaluation
indicators. NetSimile is a indicator that varies with the
number of nodes. To show the range of NetSimile, we
traverse the NetSimile between each graph and the
graph structure with the same number of nodes. We
choose the maximum value from them as the maxi-
mum value of NetSimile. When NetSimile reaches this
value, the two graphs are significantly different. In our
datasets, this value is approximately 24, and we choose
it as the maximum value of the Y-axis.

The second method is SSIM [50], which is widely
used to evaluate the similarity of two images. We use
the extracted data (topological relation; node coordi-
nates, color and size; background color; edge color) to
reconstruct the image of the graph. We measure the
similarity of the two graphs by calculating the SSIM of
the reconstructed image and the original image. Given
the images x and y of two graphs, where µx is the
average of x, σ2

x is the variance in x, σxy is the covariance
of x and y, and c is a constant used to maintain stability,

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 11

(a) Chain (SSIM = 0.98, NetSimile = 3.13)

(b) Loop (SSIM = 0.98, NetSimile = 2.53)

(c) Egocentric (SSIM = 0.97, NetSimile = 0.06)

(d) Clique (SSIM = 0.93, NetSimile = 0)

Fig. 13. We evaluate four patterns of graphs. The results
of the correct recognition are filled with blue. In the gray
box, we show the missing edge.

SSIM is defined as:

SSIM(x, y) =
(2µxµy + c1) (2σxy + c2)(

µ2
x + µ2

y + c1
) (

σ2
x + σ2

y + c2
) (3)

The higher the 1-SSIM is, the more different the two
graphs. When 1-SSIM is 0, the two images are exactly
the same.

In addition, to ensure the accuracy of the similarity
evaluation, we turn off the contrast calculation of the
foreground and background colors and the recoloring
function module of the chart with poor design in the
evaluation experiment.

6.1 Pattern Corpus

VividGraph is robust to different network structures.
Some studies [56] related to graphs summarize four
patterns of networks. There are chain type, loop type,
egocentric type, and clique type. We select these four
patterns that often appear in the network for evaluation
experiments.

For each pattern of the network, we select ten images
with a resolution of 960 × 960 for evaluation. Some
experimental results are shown in Figure 13. The blue
images are reconstructed from the extraction results. The
network structures of these four modes were extracted
correctly. The average SSIM was 0.97, and the average
NetSimile was 1.43. High SSIM and low NetSimile show
that VividGraph can accurately extract networks of var-
ious patterns. This is because our training set covers

nodes of various sizes, edges of different lengths, and
various distribution relations.

6.2 Real-World Corpus
We collect 100 pictures from Google, Shutterstock,
E-charts Gallery, D3 Gallery and user hand-drawn
sketches as our evaluation dataset. Examples of pictures
from each source are given in Figure 14. The average
SSIM obtained by extracting the underlying data in the
bitmap by our method and reconstructing the image was
0.95. The average NetSimile was 7.67. The error mainly
comes from some complex graphs and unclear pictures
in the real world. However, VividGraph can still extract
most of the network, especially when some hand-drawn
graphs have background noise. This is not possible for
traditional image processing methods.

In addition, we also find that the image extracted
and reconstructed by our method is clearer and easier
for obtaining chart features than the original image. To
verify this point of view, we also use the evaluation
model of the attention mechanism [57], an automatic
model that has been proven to predict the importance
of different elements in the design of data visualization.
This method can give an attention score between 0 and
255. The higher the score, the more attractive the data
visualization elements in the image are. The average
score of the input images was 96.44. The average score
of the output images was 97.99. The score increased
by 1.55. The small change in score proves the accuracy
of extraction, while the positive change shows that
reconstructing real-world bitmaps through our method
can help users better obtain chart features.

6.3 Additional Corpus
To further verify that our method is robust to graphs
with different resolutions and numbers of nodes, we
build four additional corpora. They include Simple I cor-
pus from the D3 library, Simple II corpus from E-charts,
complex corpus from Skimage, and directed graph cor-
pus from D3 library. The graphs of Simple I and Simple
II corpora are undirected graphs with random topologi-
cal relations, random colors, and force-directed layouts.
We choose three resolutions of 480× 480, 640× 640, and
800 × 800 and three types of node numbers around 10,
25, and 50. The results of the evaluation experiment are
shown in Figure 15(a) and (b).

The graphs of a complex corpus do not follow any
layout, so there are many layouts that have more node-
edge overlap, edge-edge overlap, or nodes that are
closer but still non-overlapping. Moreover, their colors
are all random, their edges are thin, and there are many
images where human eyes cannot distinguish between
the background and the edges. The results shown in
Figure 15(c) demonstrate that although the indicators
decline, our method is still effective.

We test three sets of directed graphs with a reso-
lution of 640 × 640 and the number of nodes around

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 12

Academic Paper E-Charts Gallery D3 Gallery ShutterstockHand-drawn Simple Ⅰ Simple Ⅱ Directed Graph Complex

Real World Corpus (100) Additional Corpus (3,000)

Fig. 14. Our perceptual evaluation dataset examples.

0
4
8
12
16
20
24

0

0.2

0.4

0.6

0.8

1

V=10 V=25 V=50

480×480 640×640 800×800
480×480 640×640 800×800

1-SSIM NetSimile

1-SSIM
NetSimile

(a) Simple I Dataset

0
4
8
12
16
20
24

0

0.2

0.4

0.6

0.8

1

V=10 V=25 V=50

480×480 640×640 800×800
480×480 640×640 800×800

1-SSIM NetSimile

1-SSIM
NetSimile

(b) Simple II Dataset

0
4
8
12
16
20
24

0

0.2

0.4

0.6

0.8

1

V=10 V=25 V=50

320×320 480×480 640×640
320×320 480×480 640×640

1-SSIM NetSimile

1-SSIM
NetSimile

(c) Complex Dataset

0
4
8
12
16
20
24

0

0.2

0.4

0.6

0.8

1

V=10 V=20 V=30

480×480 640×640 800×800
480×480 640×640 800×800

1-SSIM NetSimile1-SSIM NetSimile

1-SSIM
NetSimile

(d) Directed Graph Dataset

Fig. 15. Evaluation experiment results. In (a), the results
demonstrate that VividGraph can deal with graphs of
various image resolutions and different scale nodes. In
(b), the results are similar to those of Simple I. In (c),
the results demonstrate that although 1-SSIM raises,
VividGraph is still effective in extreme cases. In (d), the
results demonstrate that VividGraph is also suitable for
data extraction of directed graphs.

10, 20, and 30. The results are shown in Figure 15(d).
Since our pipeline has an efficient classification network
and model parameters trained separately for directed
graphs, our method is also effective for nondense, clear
directed graphs.

6.4 Time Performance

We also evaluate the time performance of VividGraph
on these datasets in Figure 16. In the figure, the X-axis
represents the number of nodes, the Y-axis represents
the number of seconds used, and the lines of different
colors represent images of different resolutions.

The resolution of the image has little effect on the time
efficiency of VividGraph. The time used will increase
significantly as the number of nodes increases. This is
because the time spent on VividGraph mainly comes
from Algorithm 1. The time complexity of Algorithm 1
is O(n2), where n is the number of nodes. Therefore,
when processing large-scale graphs, the calculation time
of VividGraph will become longer. VividGraph has a

1.5

2

2.5

3

V=10 V=25 V=50
480×480 640×640 800×800

Time/Seconds

(a) Simple I Dataset

1.5

2

2.5

3

V=10 V=25 V=50
480×480 640×640 800×800

Time/Seconds

(b) Simple II Dataset

1.5

2

2.5

3

V=10 V=25 V=50
320×320 480×480 640×640

Time/Seconds

(c) Complex Dataset

2.5

2.6

2.7

2.8

2.9

3

V=10 V=20 V=30
480×480 640×640 800×800

Time/Seconds

(d) Directed Graph Dataset

Fig. 16. Time performance comparisons of evaluation
experiments.

good time performance for graphs with fifty nodes in
general.

7 LIMITATION AND DISCUSSION

The current version of VividGraph also has some lim-
itations in extracting graph data. First, our method is
data-driven, so the model is based on our training
set. We have tried to make our training dataset cover
various graph styles, including the scale of graph, the
graph density, the graph layout, the arrow size, the
image resolution, etc. However, we cannot cover the
space for all visualizations. When the number of nodes
in the picture exceeds 50, the accuracy of the model
will decrease. we cannot deal with the overlapping
nodes. When the nodes overlap, more errors will occur.
As shown in Figure 15, the error of complex dataset
is higher than that of simple dataset. The reason is
that complex dataset includes images with overlapping
nodes. The error also increased when V = 50. We
propose an extraction algorithm of large graphs to solve
those high-resolution images with more than 50 nodes.
In the process of cutting the picture, if the node is cut
into a non-circular shape, there may be problems with
semantic segmentation or errors in the size of the nodes.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 13

As shown in Figure 10(b), the segmentation result of a
node in the detail is smaller than the ground truth.

Second, the reconnection algorithm can be further
improved. The segmentation results are not completely
accurate. When the pixels of the edge category are
identified as the background category, the edge width
will be smaller than the original image, as shown in
Figure 8(c). When the pixels of the background category
are identified as the edge category, the color of the
edges is closer to back ground, as shown in Figure 8(b).
Besides, these conditions will result in the offset of the
edge, as shown in Figure 8(c). For the sketches with
shadow as shown in Figure 7(c,d), our algorithm cannot
infer the original color of shadowed nodes. We plan
to increase the accuracy of the segmentation model or
optimize the heuristic rules to improve this in the future.

Third, when the three nodes are collinear, if we have
no prior knowledge and cannot distinguish with our
eyes, our algorithm will think that any two of these
nodes are connected. As shown in Figure 11(c), the
collinear nodes are considered as connected with each
other.

8 CONCLUSION

We proposed a method to extract the underlying data
of the graph image. We also proposed a pipeline called
VividGraph, which combines a semantic segmentation
model and a node connection algorithm. This frame-
work is suitable for undirected graphs, directed graphs,
blurred graph images, hand-drawn graphs, large graph
images, and other graphs. VividGraph can be used
to quickly transform designer sketches, restore blurred
graph pictures, obtain the underlying data of bitmaps to
generate vectors, modify graph data, redesign graphs,
etc.

In the future, we plan to improve the time efficiency
and accuracy of pipelines for large-scale networks by
optimizing networks and algorithms. We will combine
the model of this paper with OCR technology to im-
prove our system. Cooperating with designers to im-
prove the human-computer interaction experience of the
system is also under our consideration.

ACKNOWLEDGMENTS

We would like to acknowledge the support from NSFC
under Grant No. 61802128 and 62072183.

REFERENCES
[1] J. Yang, Y.-G. Jiang, A. G. Hauptmann, and C.-W. Ngo, “Evaluat-

ing bag-of-visual-words representations in scene classification,”
in Proceedings of the international workshop on Workshop on multi-
media information retrieval, 2007, pp. 197–206.

[2] Y. Liu, X. Lu, Y. Qin, Z. Tang, and J. Xu, “Review of chart recogni-
tion in document images,” in Visualization and Data Analysis 2013,
vol. 8654. International Society for Optics and Photonics, 2013,
pp. 384–391.

[3] E. Brynjolfsson and K. McElheran, “The rapid adoption of data-
driven decision-making,” American Economic Review, vol. 106,
no. 5, pp. 133–39, 2016.

[4] P. Zhang, C. Li, and C. Wang, “Viscode: Embedding information
in visualization images using encoder-decoder network,” IEEE
TVCG, 2020.

[5] D. Jung, W. Kim, H. Song, J.-i. Hwang, B. Lee, B. Kim, and J. Seo,
“Chartsense: Interactive data extraction from chart images,” in
Proceedings of the 2017 chi conference on human factors in computing
systems, 2017, pp. 6706–6717.

[6] M. Savva, N. Kong, A. Chhajta, L. Fei-Fei, M. Agrawala, and
J. Heer, “Revision: Automated classification, analysis and re-
design of chart images,” in Proceedings of the 24th annual ACM
symposium on User interface software and technology, 2011, pp. 393–
402.

[7] N. Siegel, Z. Horvitz, R. Levin, S. Divvala, and A. Farhadi, “Fig-
ureseer: Parsing result-figures in research papers,” in European
Conference on Computer Vision. Springer, 2016, pp. 664–680.

[8] J. Poco, A. Mayhua, and J. Heer, “Extracting and retargeting color
mappings from bitmap images of visualizations,” IEEE TVCG,
vol. 24, no. 1, pp. 637–646, 2017.

[9] D. Haehn, J. Tompkin, and H. Pfister, “Evaluating ‘graphical
perception’with cnns,” IEEE TVCG, vol. 25, no. 1, pp. 641–650,
2018.

[10] L. Yuan, W. Zeng, S. Fu, Z. Zeng, H. Li, C.-W. Fu, and H. Qu,
“Deep colormap extraction from visualizations,” IEEE TVCG,
2021.

[11] M. Bostock, V. Ogievetsky, and J. Heer, “D3 data-driven docu-
ments,” IEEE TVCG, vol. 17, no. 12, pp. 2301–2309, 2011.

[12] D. Li, H. Mei, Y. Shen, S. Su, W. Zhang, J. Wang, M. Zu, and
W. Chen, “Echarts: a declarative framework for rapid construc-
tion of web-based visualization,” Visual Informatics, vol. 2, no. 2,
pp. 136–146, 2018.

[13] J. Harper and M. Agrawala, “Deconstructing and restyling d3
visualizations,” in Proceedings of the 27th annual ACM symposium
on User interface software and technology, 2014, pp. 253–262.

[14] A. Rohatgi, “Webplotdigitizer,” 2017.
[15] A. Gross, S. Schirm, and M. Scholz, “Ycasd–a tool for capturing

and scaling data from graphical representations,” BMC bioinfor-
matics, vol. 15, no. 1, p. 219, 2014.

[16] J. Poco and J. Heer, “Reverse-engineering visualizations: Recov-
ering visual encodings from chart images,” in Computer Graphics
Forum, vol. 36, no. 3. Wiley Online Library, 2017, pp. 353–363.

[17] F. Zhou, Y. Zhao, W. Chen, Y. Tan, Y. Xu, Y. Chen, C. Liu, and
Y. Zhao, “Reverse-engineering bar charts using neural networks,”
Journal of Visualization, pp. 491–435, 2021.

[18] A. Flower, J. W. McKenna, and G. Upreti, “Validity and reliability
of graphclick and datathief iii for data extraction,” Behavior
modification, vol. 40, no. 3, pp. 396–413, 2016.

[19] G. G. Méndez, M. A. Nacenta, and S. Vandenheste, “ivolver:
Interactive visual language for visualization extraction and re-
construction,” in Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems, 2016, pp. 4073–4085.

[20] W. S. Cleveland and R. McGill, “Graphical perception: Theory,
experimentation, and application to the development of graphical
methods,” Journal of the American statistical association, vol. 79, no.
387, pp. 531–554, 1984.

[21] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the
IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[22] K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” pp. 1–14, 2015.

[23] F. Chollet, “Xception: Deep learning with depthwise separable
convolutions,” in Proceedings of the IEEE CVPR, 2017, pp. 1251–
1258.

[24] H. Haleem, Y. Wang, A. Puri, S. Wadhwa, and H. Qu, “Evaluating
the readability of force directed graph layouts: A deep learning
approach,” Computer Graphics and Applications, IEEE, 2019.

[25] L. Giovannangeli, R. Bourqui, R. Giot, and D. Auber, “Toward
automatic comparison of visualization techniques: Application
to graph visualization,” Visual Informatics, 2020.

[26] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional net-
works for semantic segmentation,” in Proceedings of the IEEE
CVPR, 2015, pp. 3431–3440.

[27] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep
convolutional encoder-decoder architecture for image segmenta-
tion,” IEEE transactions on pattern analysis and machine intelligence,
vol. 39, no. 12, pp. 2481–2495, 2017.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 14

[28] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” in Proceedings of the IEEE CVPR, 2017, pp. 2881–2890.

[29] N. Kong and M. Agrawala, “Graphical overlays: Using layered
elements to aid chart reading,” IEEE transactions on visualization
and computer graphics, vol. 18, no. 12, pp. 2631–2638, 2012.

[30] T. Itoh, C. Muelder, K.-L. Ma, and J. Sese, “A hybrid space-
filling and force-directed layout method for visualizing multiple-
category graphs,” in 2009 IEEE Pacific Visualization Symposium.
IEEE, 2009, pp. 121–128.

[31] M. Wattenberg, “Arc diagrams: Visualizing structure in strings,”
in IEEE Symposium on Information Visualization, 2002. INFOVIS
2002. IEEE, 2002, pp. 110–116.

[32] K.-P. Yee, D. Fisher, R. Dhamija, and M. Hearst, “Animated
exploration of graphs with radial layout,” in Proc. IEEE InfoVis
2001, 2001, pp. 43–50.

[33] L. Wang, J. Giesen, K. T. McDonnell, P. Zolliker, and K. Mueller,
“Color design for illustrative visualization,” IEEE TVCG, vol. 14,
no. 6, pp. 1739–1754, 2008.

[34] C. Hirsch, J. Hosking, and J. Grundy, “Interactive visualiza-
tion tools for exploring the semantic graph of large knowledge
spaces,” in Workshop on Visual Interfaces to the Social and the
Semantic Web (VISSW2009), vol. 443, 2009, pp. 11–16.

[35] R. Rossi and N. Ahmed, “The network data repository with
interactive graph analytics and visualization,” in Twenty-Ninth
AAAI Conference on Artificial Intelligence, 2015.

[36] C. Lai, Z. Lin, R. Jiang, Y. Han, C. Liu, and X. Yuan, “Automatic
annotation synchronizing with textual description for visualiza-
tion,” in Proceedings of the 2020 CHI Conference on Human Factors
in Computing Systems, 2020, pp. 1–13.

[37] D. H. Kim, E. Hoque, and M. Agrawala, “Answering questions
about charts and generating visual explanations,” in Proceedings
of the 2020 CHI Conference on Human Factors in Computing Systems,
2020, pp. 1–13.

[38] Y. Ma, A. K. Tung, W. Wang, X. Gao, Z. Pan, and W. Chen,
“Scatternet: A deep subjective similarity model for visual analysis
of scatterplots,” IEEE TVCG, vol. 26, no. 3, pp. 1562–1576, 2018.

[39] S. Van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne,
J. D. Warner, N. Yager, E. Gouillart, and T. Yu, “scikit-image:
image processing in python,” PeerJ, vol. 2, p. e453, 2014.

[40] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classi-
fication with deep convolutional neural networks,” in Advances
in neural information processing systems, 2012, pp. 1097–1105.

[41] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“Imagenet: A large-scale hierarchical image database,” in 2009
IEEE CVPR. Ieee, 2009, pp. 248–255.

[42] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proceedings of the IEEE CVPR, 2016, pp.
770–778.

[43] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,” in
Proceedings of the IEEE CVPR, 2016, pp. 2818–2826.

[44] L. Bottou, “Stochastic gradient descent tricks,” in Neural networks:
Tricks of the trade. Springer, 2012, pp. 421–436.

[45] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” in International
Conference on Medical image computing and computer-assisted inter-
vention. Springer, 2015, pp. 234–241.

[46] F. Chollet et al., “Keras,” https://github.com/keras-team/keras,
2015.

[47] J. Serra, “Image analysis and mathematical morphol-ogy,” 1982.
[48] B. Caldwell, M. Cooper, L. G. Reid, G. Vanderheiden,

W. Chisholm, J. Slatin, and J. White, “Web content accessibility
guidelines (wcag) 2.0,” WWW Consortium (W3C), 2008.

[49] S. Leijnen and F. v. Veen, “The neural network zoo,” in Multi-
disciplinary Digital Publishing Institute Proceedings, vol. 47, no. 1,
2020, p. 9.

[50] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,”
IEEE transactions on image processing, vol. 13, no. 4, pp. 600–612,
2004.

[51] S. E. Palmer, K. B. Schloss, and J. Sammartino, “Visual aesthetics
and human preference,” Annual review of psychology, vol. 64, pp.
77–107, 2013.

[52] B. Alper, B. Bach, N. Henry Riche, T. Isenberg, and J.-D. Fekete,
“Weighted graph comparison techniques for brain connectivity

analysis,” in Proceedings of the SIGCHI conference on human factors
in computing systems, 2013, pp. 483–492.

[53] M. Okoe, R. Jianu, and S. Kobourov, “Node-link or adjacency
matrices: Old question, new insights,” IEEE TVCG, vol. 25, no. 10,
pp. 2940–2952, 2018.

[54] M. Ghoniem, J.-D. Fekete, and P. Castagliola, “On the readability
of graphs using node-link and matrix-based representations: a
controlled experiment and statistical analysis,” Information Visu-
alization, vol. 4, no. 2, pp. 114–135, 2005.

[55] M. Berlingerio, D. Koutra, T. Eliassi-Rad, and C. Faloutsos,
“Netsimile: A scalable approach to size-independent network
similarity,” arXiv preprint arXiv:1209.2684, 2012.

[56] Y. Wang, G. Baciu, and C. Li, “Smooth animation of structure
evolution in time-varying graphs with pattern matching,” in
SIGGRAPH Asia 2017 Symposium on Visualization, ser. SA ’17, New
York, NY, USA, 2017.

[57] Z. Bylinskii, N. W. Kim, P. O’Donovan, S. Alsheikh, S. Madan,
H. Pfister, F. Durand, B. Russell, and A. Hertzmann, “Learning
visual importance for graphic designs and data visualizations,”
in Proceedings of the 30th Annual ACM symposium on user interface
software and technology, 2017, pp. 57–69.

Sicheng Song received his B.Eng. from
Hangzhou Dianzi University, China, in 2019.
He is working toward the Ph.D. degree with
East China Normal University, Shanghai, China.
His main research interests include information
visualization and visual analysis.

Chenhui Li received Ph.D. from the Depart-
ment of Computing at Hong Kong Polytechnic
University, in 2018. He is an associate profes-
sor with the School of Computer Science and
Technology at East China Normal University.
He received ICCI*CC Best Paper Award (2015)
and SIGGRAPH Asia Sym. Vis. Best Paper
Award (2017). He has served as a local chair
in VINCI2019. He works on the research of in-
formation visualization and computer graphics.

Yujing Sun received her B.Eng. from East
China Normal University, in 2020. She is work-
ing toward the Master degree with East China
Normal University, Shanghai, China. Her main
research interests include information visualiza-
tion and visual analysis.

Changbo Wang is a professor with the School
of Computer Science and Technology, East
China Normal University. He received his Ph.D.
degree at the State Key Lab of CADCG of Zhe-
jiang University in 2006. He was a post-doctor
of the State University of New York in 2010.
His research interests mainly include computer
graphics, information visualization, visual Ana-
lytics, etc. He is serving as the Young AE of
Frontiers of Computer Science, and PC member
for several international conferences.

https://github.com/keras-team/keras

