
iARVis: Mobile AR Based Declarative Information Visualization Authoring,
Exploring and Sharing

Junjie Chen* Chenhui Li† Sicheng Song‡ Changbo Wang§

School of Computer Science and Technology, East China Normal University

a b c

d e f

Figure 1: iARVis can easily create augmented reality-based information and data visualization environments in a declarative
way for various scenarios while providing interaction ability. a) Simulated Scenario: Displaying visualization widgets near an
artwork in a museum about its brief introduction, historical provenance and price, and additional information about the author,
etc. b) Simulated Scenario: Displaying visualization widgets near a MacBook Pro in a store about its brief introduction, price,
technical specifications, product family history, and introduction about its new Apple Silicon chip. c) Augment a static map
visualization of Shanghai with a dynamic visualization to show real-time weather information. d) Augment a static bar chart
visualization of Shanghai’s one-week historical weather information with previous and latest weather information. e) Use the
SPLOM visualization technique to visualize the relationship between different factors that lead to diabetes. f) Dynamically alter
the visual encodings of a chart in the widget to match the user’s preferences.

ABSTRACT

We present iARVis, a proof-of-concept toolkit for creating, expe-
riencing, and sharing mobile AR-based information visualization
environments. Over the past years, AR has emerged as a promising
medium for information and data visualization beyond the physical
media and the desktop, enabling interactivity and eliminating spatial
limits. However, the creation of such environments remains diffi-
cult and frequently necessitates low-level programming expertise
and lengthy hand encodings. We present a declarative approach for
defining the augmented reality (AR) environment, including how
information is automatically positioned, laid out, and interacted with,
to improve the efficiency and flexibility of constructing AR-based
information visualization environments. We provide fundamental
layout and visual components such as the grid, rich text, images,
and charts for the development of complex visualization widgets,

*e-mail: junjiechen@stu.ecnu.edu.cn
†e-mail: chli@cs.ecnu.edu.cn
‡e-mail: scsong@stu.ecnu.edu.cn
§e-mail: cbwang@cs.ecnu.edu.cn

as well as automatic targeting methods based on image and object
tracking for the development of the AR environment. To increase
design efficiency, we also provide features such as hot-reload and
several creation levels for both novice and advanced users. We also
investigate how the augmented reality-based visualization environ-
ment could persist and be shared through the internet and provide
ways for storing, sharing, and restoring the environment to give a
continuous and seamless experience. To demonstrate the viability
and extensibility, we evaluate iARVis using a variety of use cases
along with performance evaluation and expert reviews.

Index Terms: Visualization systems and tools; Augmented Reality

1 INTRODUCTION

Over the past few years, with the development of augmented re-
ality (AR) and virtual reality (VR) technologies, research interest
in data visualization with AR and VR (e.g., situated analytics and
immersive analytics) has increased rapidly. Information and data
visualization in AR and VR is a promising method for visualiza-
tion processes and analysis, providing the marked advantages of
unlimited space, rich interactivity, and intuitive 3D graphic represen-
tation. The applications of AR and VR-based data visualization are
expanding to fields such as scientific visualization [35, 55], medical
visualization [26, 46], and information visualization [12, 18], etc.

However, it is still difficult to validate visualization prototypes
and develop practical applications for AR or VR-based environ-
ments [6,15,50] because it is a complex task that requires knowledge
of concepts and technology from data visualization, 3D computer
graphics, AR and VR, as well as human-computer interaction. Toolk-
its for creating AR and VR-based visualization environments have a
long tradition [39, 53]. Recently, the success and wide adoption of
Vega-Lite [48] have inspired the community to develop visualization-
specific toolkits for creating visualizations rapidly in a declarative
way. For example, both DXR [50] and VRIA [11] provide a declara-
tive way to create 3D data visualizations in an immersive environ-
ment using grammar that is similar to Vega-Lite.

Nonetheless, existing toolkits only consider how to create the
visualization chart itself rather than the entire visualization environ-
ment. For example, displaying other visualization information such
as rich text, images, audio, and videos is believed to provide a better
understanding of the relationships between perceptual and abstract
information [10]. Another issue with AR-based visualization is
that we must place the proposed visualization in the physical world,
which is a challenging task because the physical world is dynamic
and we must perform the placement manually every time we enter
the AR environment. For example, every time we want to check out
the additional information displayed in the AR environment near an
artwork in a gallery, we could place the visualization chart in the
physical world and manually move it to an appropriate position.

We believe that it is time to think about how to design an easy,
extensible, and user-friendly way to create the entire visualization
environment in AR, with automatic positioning, interaction, persis-
tence, and continuity.

In this paper, we present iARVis, a proof-of-concept toolkit that
can create AR-based visualization environments in a declarative way.
iARVis is based on the mobile augmented reality platform ARKit [4],
which is one of the largest AR platforms in the world, as a low-cost
alternative to the high-cost and unpopular AR headsets, thus allow-
ing most people to access it. iARVis provides a declarative way to
create complex interactable visualization widgets using basic layout
components and visual element components. We also discuss the
different methods that can allow an entire visualization environment
to persist and be restored to achieve persistence and continuity in
the AR experience. This process would allow us to save or share
the visualization environment, and continue the developed workflow
when revisiting it. Finally, we present several example applications
using iARVis with performance evaluation and expert reviews to
demonstrate iARVis’s applicability and scalability.

iARVis is implemented on top of native technologies on iOS, for
example, using ARKit as the AR engine and SwiftUI as the 2D
content rendering engine. iARVis is responsible for parsing the spec-
ification, creating the visualization environment in AR, managing
the interaction, persisting the environment, etc. Android could be
an alternative platform since all methods we use are general. AR-
Core (Android’s native AR engine) does not support features such
as object tracking, so we choose iOS as our platform.

This study makes the following contributions:

• We design an efficient and extensible declarative method for
creating an AR-based information and data visualization en-
vironment, including automatic positioning, user interface,
interaction, etc.

• We provide features such as hot-reload and different methods
of creation for both novice and advanced users to improve the
efficiency of the creation process.

• We propose approaches for persistent working environments
that enable the sharing and restoration of working environ-
ments when returning to the same environment.

• We present multiple example applications alongside perfor-
mance evaluations and expert reviews to demonstrate the ap-

plicability and scalability of iARVis.

iARVis is available at https://github.com/iARVis.

2 RELATED WORK

We briefly review existing AR and VR-based information and data
visualization. Specifically, we compare toolkits for creating visual-
ization environments for AR and VR.

2.1 Applications of Visualization in AR / VR
With the development of augmented reality (AR) and virtual reality
(VR) technologies, AR and VR-based information and data visual-
ization have been widely used in various fields, such as information
visualization, scientific visualization, and medical visualization.

Immersive analytics (IA) and situated analytics (SA) [13, 51, 54]
use novel display technologies such as AR and VR to provide a more
immersive and interactive experience for data analysis. Aided by
the recent availability of new and affordable AR and VR headsets,
many studies have been performed over the last decade, investi-
gating both AR and VR. Previous AR and VR-based research for
data visualization has focused on CAVE environments for scien-
tific visualization [1, 19] and abstract information visualization [44].
However, recent work has also shown the potential for perception
and interaction [5] and collaboration [18]. AR and VR have been
used to visualize tensor-valued volumetric datasets [61], explore
networks [37], collaborative immersive worlds that can manage
complex data [20], immersive ego and exocentric maps [60], origin-
destination flow maps [59], trajectories and brain fibers [33], and
data stream from IoT [25].

Portable mobile devices are another form of AR platform that
is more accessible and popular to the general public. Mobile AR
device-based research has been introduced in various scenarios be-
cause ARKit [4] was released on iOS in 2017. For example, Melis-
sAR [22], an AR system based on a tablet, shows on-site drift
information to assist beekeepers in understanding bee behaviors.
Based on ARKit’s real-time face-tracking functionality [23], Zhao
et al. [62] developed an ego-centric network AR visualization sys-
tem supporting on-site analysis of temporal co-authoring patterns of
researchers using an iPhone. In addition, using mobile devices as an
auxiliary tool for data analysis in AR and VR is also a popular re-
search topic [32, 38]. Mobile devices are more common in daily life,
and some research focuses on more common and casual scenarios,
such as using mobile AR for personal visualization [14], navigation
planning, shopping assistance [21], etc.

In this study, we focus on mobile AR-based information and data
visualization, to provide a more accessible platform for users. The
goal of iARVis is to facilitate the creation of mobile AR-based en-
vironments for visualization analysis and to visualize information
in daily life. For example, with the help of iARVis, users can create
a mobile AR-based environment to visualize data using advanced
visualization techniques such as Small Multiples (Sect. 5.1.3) and
SPLOM (Sect. 5.3.1) easily and also create visualization environ-
ments for more casual and daily life scenarios such as visiting an
artwork exhibition (Sect. 5.1.1) and offline shopping (Sect. 5.1.2).

2.2 Authoring Toolkits for Visualization in AR / VR
Authoring toolkits are important in visualization research because
they allow researchers and designers to build visualizations with ease
of use. The design procedures for data visualization have strongly
benefited from the formalization of the grammar of graphics [7]. For
example, visualization authoring toolkits, such as InfoVis Toolkit
[24], ProtoVis [8], Prefuse [30], d3.js [9], or Vega [49], which
are based on such abstractions, have brought data visualization
to a broad audience of programmers and designers. Instead of
writing low-level codes, these high-level toolkits use GUI or human-
readable grammar to define visual mappings and layouts for rapid
and automatic design.

https://github.com/iARVis

JSON

Config

CSV JSON

Data

Spec

iARVis Spec

JSON File

</>

iARVis Spec

Parser

</>

AR

Engine

Visualization

Widgets

Tracking

Target

Position

iARVis

Config

Set
ParseLinked

a

iARVis overview: An iARVis spec file references data in JSON or CSV format and
all other configurations (tracking target, visualization widget design, etc.). The
spec parser will parse the JSON content into a data model representing the
configuration of iARVis, and give the configuration to the AR engine, to capture
the tracking target, render visualization widgets and position them in the AR
environment.

iARVis://openVisConfig? =... url (using URL)
iARVis://openComponent? =...& =...& =...url anchor relativePosition
iARVis:// openVisConfig? =...json (using JSON literal)
iARVis://openComponent? =...& =...& =...json anchor relativePosition

Use super-hyperlink to define custom actions e

{

 : [

 {

 : [

 {

 : {

 : [, ,],

 : { : }

 }

 }

],

 :
 }

]

}

"imageTrackingConfigurations"

"relationships"

"widgetConfiguration"
"relativeAnchorPoint": "trailing",

"relativePosition" 0.05 0 0
"component" "url"

"imageURL"

"..."

"..."

b

A widget configuration that
specifies an image tracking
target with a target image
URL and relative position.

{

 : {

 : [

 {

 : { : }

 }

],

 : [

 {

 : ,

 : {

 : { : },

 : { : }

 }

 }

],

 : { : },

: { : [,] }

 }

}

"chart"
"dataSources"

"data" "url"

"components"

"type"
"config"
"y" "field"
"x" "field"

"chartYAxis" "hidden"
 "chartYScale" "domain" 0 1

"..."

"PointMark"

"y"
"x"

true

c

A chart component
configuration that renders a
scatterplot.

Use basic components like vStack, hStack, chart,
image, and text to make complex content.

{

 : {

 : ,

 : ,

 : [

 {

 : { : }

 },

 {

 : {

 : ,

 : ,

 : [

 {

 : { : , : }

 },

 {

 : {

 : , : { : }, :
 }

 }

]

 }

 }

]

 }

}

"vStack"
"alignment"
"spacing" 8
"elements"

"chart" "url"

"hStack"
"alignment"
"spacing" 16
"elements"

"image" "url" "contentMode"

"text"
"content" "fontStyle" "size" 17 "color"

"leading"

"..."

"center"

"..." "fit"

"..." "#AAA"

d

Figure 2: a) iARVis overview, b) widget configuration example, c) chart component example, d) vStack component example. e) super-
hyperlink examples

In recent years, inspired by these high-level visualization toolkits,
AR and VR frameworks for information and data visualization have
been developed to create visualization environments. These toolkits
make it easier to create visualizations for AR and VR than using 3D
editors because they provide a high-level GUI or grammar for cre-
ating visualizations. For example, for immersive analytics, toolkits
such as DXR [50] and IATK [17] are built with the Unity engine
and provide high-level GUI (Graphical user interface) or declarative
grammar to create visualizations in AR or VR. DXR and IATK both
provide a GUI panel to set the visual mappings, such as color, size,
and shape, to facilitate the creation of visualizations. DXR targets
three levels of user expertise (beginner, intermediate, advanced) and
uses a similar grammar to Vega-Lite [48]. IATK is built with scala-
bility in mind to visualize and interact with datasets with millions of
points while maintaining a usable frame rate. VRIA [11] is another
toolkit that can create 3D data visualization in VR using declarative
grammar, which is similar to DXR, but is designed specifically for
WebXR. PapARVis [15] extends the Vega grammar to augment static
visualizations to eliminate the temporal and spatial limitations.

These toolkits make creating visualization charts in 3D easier, but
they aren’t tailored to some requirements of AR. While DXR and
IATK are helpful, they require users to manually position visualiza-
tions in the real world, which is problematic for situated analytics.
The visualization environment should also include supplementary
data such as rich text, images, and videos in addition to visualization
charts for better grasping of the interconnections between perceptual
and abstract information, but current toolkits such as VRIA and Pa-
pARVis can only create visualization charts. Another critical issue
that isn’t being addressed by existing solutions is the need for the
visualization environment to be persistent and shared among users.
All of these problems are considered in iARVis, and discussed later
in Sect. 3.3 (automatic positioning), Sect. 3.2.1 (widget design), and
Sect. 4 (persistence and continuity). The comparison of iARVis and
existing declarative authoring toolkits are in Table 1.

3 DESIGN

This research aims to develop a declarative approach to define the
user interface and interaction of visualization widgets in augmented
reality with advanced features such as automatic positioning. Be-
cause of the need for programming knowledge when dealing with
user interface layout and interaction, designers in the past typically
only provided some static visualization images. This is a particularly
pressing problem when it comes to the visual design of 3D scenes,
as game engines like Unity and Unreal Engine are commonly used
in the creation of user interface and interaction design.

We thus design a declarative way to define the automatic posi-
tioning method, user interface, and interaction of visualization

Feature DXR VRIA PapARVis iARVis
Platform Unity Web Unity iOS
Content Charts Charts Charts Charts,

Multime-
dia

Dimensionality 2D, 3D 2D, 3D 2D 2D
Positioning Manually Manually QR Code Tracking*
Interaction X X - X
Hot-reload - - - X
API - X - X

Table 1: Comparison between iARVis and existing declarative au-
thoring toolkits. *iARVis supports using object tracking, image
tracking, and QR code for automatic positioning. (Sect. 3.3)

widgets, which is based on the following principles:

• Designed specifications can be stored formally and can thus
be shared and reused in the future (Sect. 4).

• Design grammar should be clean, concise, and easy to learn,
with no programming knowledge required.

• Provide the ability to design both visualization charts and other
visual components, such as rich text, images, audio, videos,
etc., to provide a rich user interface.

• Design grammar should be extensible to promise future exten-
sions to provide unsupported visualization types and additional
components (Sect. 5.3).

Also, we confine the proposed design scope with the following
restrictions: 1) Our research is based on augmented reality, which is
markedly different from virtual reality. All usage scenarios that we
consider are based on this difference, in augmented reality, virtual
objects placed in augmented reality typically have certain relation-
ships with some physical objects in the real world. 2) We only
consider placing two-dimensional data visualization in the proposed
design space because visualizing 3D data using charts in 3D space
might be controversial [2,31,36,57]. Many concepts and techniques
are general and reusable when applied to 3D data visualization ; thus,
we suggest that 3D visualization be investigated in future research.

Due to space limitations, we primarily discuss the functionality
of iARVis (see the documentation page for more details).

3.1 Overview
As shown in Fig. 2a, the conceptual model of iARVis is based on
the following components: 1) Data source and separated JSON con-
figuration files. The data source can be JSON files or CSV files,
which contain the data to be visualized, and an iARVis specification
can contain multiple labeled data sources. JSON configuration files

iARVis Layout Components

HStack VStack

Spacer Grid Segmented Control

1 2 3

3
2

1

a {

 : {

 : { : },

 : [, , ,],

 : {

 : ,

 : { : , : },

 : [

 { : , : , : },

 { : , : , : }

]

 }

 }

}

"slpom"
"data" "url"
"fields"
"config"
"symbol"
"symbolSize" "width" 2 "height" 2
"foregroundStyleColorMap"

"field" "value" 0 "colol"
"field" "value" 1 "colol"

"..."
"Pregnancies" "Glucose" "BloodPressure" "..."

"circle"

"Outcome" "blue"
"Outcome" "red"

b

We can extend the iARVis’s component system
to support the new SPLOM component. We can
specify the fields used in SPLOM, and the
configuration of each scatterplot in the SPLOM.

c

Figure 3: a) Explanation of iARVis’s layout components. b) Extend iARVis to support the SPLOM component. c) Visualization widget
transformation’s control panel.

contain all information we need to build the visualization environ-
ment such as the visualization widget design, automatic positioning
method (Sect. 3.3), etc. 2) Specification JSON file. The iARVis
specification file is a single JSON file that links all data sources
and separated JSON configuration files. 3) Specification parser.
The iARVis specification parser is a module that parses the iARVis
specification file and builds a data model representing the config-
uration of iARVis, which could be used by the AR engine to set
up the visualization configuration. 4) AR engine. The AR engine
uses the configuration data model to set the tracking target, render
visualization widgets, and position them in the AR environment.
5) Visualization widgets. Visualization widgets contain the inter-
actable visual components that are rendered in the AR environment,
including charts, text, images, audio, videos, etc.

We choose JSON-based specifications as the design grammar be-
cause JSON is a human-readable format, and researchers are familiar
with using JSON to represent the configuration of data visualization
(e.g., using Vega-Lite) [40]. Each part of the configuration could be
a literal JSON string or separated as a URL pointer to a JSON file
which improves the readability of the configuration.

3.2 Visualization Widget Design
Previous researchers proposed an idea called Information-Rich
Virtual Environments (IRVE) [10, 42, 43], which is a pattern that
describes virtual environments with additional abstract information
of text, numbers, images, etc., to provide a better understanding of
the relationships between perceptual and abstract information. In
the proposed design, we consider the concept of IRVE and decide to
provide similar visualization widgets for iARVis.

Visualization widgets are placed in the space of AR, typically near
some physical objects in the real world by automatic positioning
(Sect. 3.3), showing the designed visualization content, and helping
to interact with the visualization. For example, we can attach a
visualization widget to an artwork in an exhibition, showing an
introduction of the artwork with provenance and historical price
charts (Fig. 4).

3.2.1 Visual Element Components

We provide basic visual elements including rich text, image, video,
audio, table, and chart etc., and designers can easily compose
these elements in a declarative way to build more complex visual-
ization widgets. The proposed design is extensible, allowing more
visual elements and visualization types to be added and supported
easily (Sect. 5.3).

We use Markdown syntax [16] to generate rich text (Fig. 2d),
which supports adding heading text, bold text, italic text, hyperlinks,
etc., with additional parameters to control the size, weight, color, and
multiline alignment of the text. In addition to the basic hyperlink

in rich text, we also provide a super-hyperlink(URLs start with
iARVis://, Fig. 2e), which can be used to provide more powerful
actions such as opening a web page (Fig. 5a), presenting a dialog
and opening a new visualization widget (Fig. 4e).

The chart component allows designers to specify marks with
data and configurations to render charts (Fig. 2c). In the chart con-
figuration, we can set the color mapping, mark type, interaction, etc.
We can also add basic interactions to the chart, such as hovering or
tapping around a data point to show provided detailed information as
a tooltip (Fig. 4b, Fig. 4d), and tapping the visualization annotation
to open a new visualization widget (Fig. 4e) or a web page (Fig. 5a).
The detailed information of a tooltip is built using iARVis’s compo-
nent system, which indicates it has the same ability of interactivity.
We also provide the selection interaction when using visualization
techniques such as SPLOM (Fig. 5c), which allows users to select a
range of data points and display the summary information.

We also provide a set of common properties to control the ap-
pearance and layout of each visual element, such as padding size,
background color, and corner radius. One important common prop-
erty is onTap, which can bind actions to visual elements, and we
provide basic actions such as presenting a dialog, opening a new
visualization widget (Fig. 4e), and opening a web page (Fig. 5b).

Additional information about different types of components with
their parameters and common properties is available on the docu-
mentation page.

3.2.2 Layout Components
Layout components are used to position visual elements. As shown
in Fig. 3a, we provide 5 types of layout components: HStack,
VStack, Grid, Segmented Control and Spacer.

With these basic layout components and visual element compo-
nents, designers can make complex visualization widgets containing
a variety of visual elements in different styles and layouts (Fig. 2d).
Additional information about all the layout components is available
on the documentation page.

3.3 Visualization Widget Automatic Positioning
One thing that we must consider after designing the interface of
the visualization widget is positioning [58]. We provide several
ways to predefine the 3D transformation of a visualization widget in
augmented reality:

• Object targeting. A meaningful reason for using augmented
reality is that we want to connect data visualizations with real-
world objects. Using object detection [41], we can track the
transformation of an object with a provided scanned model in
the real world.

• Image targeting. Image detection [34] is much faster and
more accurate than object detection; thus, if the targeting object

is an image, or is difficult to obtain the 3D model of the object,
we can use image detection to retrieve the 3D transformation
of the target objects.

• QR code targeting. If we cannot fulfill the requirements of
both object tracking and image tracking, but we still want to
place the visualization widget automatically, we can use a QR
code to help users.

• Freedom placing. If we do not need to bind the visualization
widget with any real-world objects, we can freely place the
widget on a detected plane, or use gestures and the auxiliary
control panel to directly adjust the 3D transformation.

As shown in Fig. 2b, we can simply specify a relative transfor-
mation of the visualization widget to the tracking target with an
anchor point to determine the 3D transformation in the real world.
When we first enter the augmented reality environment, we only
need to use the predefined information in the JSON specification to
determine the transformation of the visualization widget. The design
of the declarative positioning also provides an opportunity to design
persistence and continuity, which will be discussed in Sect. 4.

3.4 Digital Presence
Because display techniques such as the layout and size of 3D widgets
are complicated to deal with in augmented reality [42, 47, 56] and
because various users are comfortable with different levels of digital
presence (presence of a digital component) [28], we also provide an
option to bring widgets and other information to 2D screen space.

As shown in Fig. 4d, we can bring a visualization widget from
the 3D augmented reality space to the 2D screen space by tapping
the expand button on the corner of the visualization widget, to
explore the widget in a larger size with more information and more
accurate interaction. Small tooltips on a visualization chart can
also be expanded and shown in the 2D screen space to provide full
information (Fig. 4d). Videos, images, and web pages (Fig. 5b)
should be displayed in the 2D screen space for a better viewing and
interacting experience.

With the support of changing the digital presence of some compo-
nents, users can have the most comfortable augmented reality-based
information visualization experience.

3.5 User Preferences
iARVis supports changing the configuration during the visualization
analysis process to fit the user’s preferences, and the new configura-
tion can be saved and shared with other users at a later time.

By offering a 2D panel to alter the encoding provided by the
iARVis specification, such as changing the color mapping of the data,
we offer a way to modify the visual encoding of the visualization
chart. As shown in Fig. 1f, we can change the color mapping of
the data to match the user’s preferences. We can also, change the
3D transformation of the visualization widget, such as changing the
anchor point, relative position and size of the visualization widget
using gestures or the auxiliary control panel (Fig. 3c).

3.6 Authoring Efficiency
Efficiency is important for augmented reality-based visualization
development and prototype validation. We provide features such as
different levels of creation and hot-reload to help users create and
verify the visualization widget quickly.

3.6.1 Two Levels of Creation for Users in Different Levels
We have designed iARVis to be accessible to novice users, using
JSON as the specification format of iARVis, which is straightfor-
ward to understand. For more advanced users, we also provide an
advanced way to create iARVis specifications programmatically,
which is easier, more powerful, and more flexible than directly writ-
ing JSON specifications.

Novice Users. The JSON format is human-readable, and we can
provide a JSON schema to create an intelligent text editor with the
auto-completion feature. Users can refer to the documentation to
learn about all the configurations and components, and then create
an iARVis specification with the help of auto-completion.

Advanced Users. For advanced users, we provide a way to create
iARVis specifications programmatically. Because all configurations
are bidirectional JSON codable, we can create the data model of
iARVis specifications programmatically, and then encode it to JSON
to create the specification. The creation of the data model requires
some knowledge of the Swift programming language [52], but it
is much easier and faster than creating a JSON specification from
scratch with the programming language level autocompletion.

3.6.2 Hot-reload
Creating and verifying an AR-based visualization environment pro-
totype is tedious and involves different tools and devices [15]; thus,
we want to optimize the traditional coding, building, deploying,
and verifying process to improve efficiency. Because we use JSON
format to describe the environment and parse the JSON content
to create the environment, we can achieve the hot-reload effect by
simply observing the changes in the JSON.

Thus, we can simplify the procedure to, 1) specify the speci-
fication of the environment, 2) use a mobile device to verify the
prototype, 3) modify the specification to justify the prototype, 4) the
environment updates automatically and we can verify the prototype
again.

With the hot-reload feature, we can easily create, modify and ver-
ify the visualization environment without any building and installing
procedures.

4 PERSISTENCE AND CONTINUITY

We will now discuss the storage, distribution, persistence, and conti-
nuity of augmented reality-based visualization tasks. For web-based
data visualization tasks, visualization storage and distribution are
easy to implement, for example, we can generate static images for
visualizations, and deploy them to a web server. Currently, a bet-
ter method for web-based data visualization is to use visualization
libraries(e.g., d3.js, Vega-Lite) to generate Canvas or SVG-based
visualizations with JavaScript codes and render them on the fly.

For augmented reality-based visualization tasks, storage and dis-
tribution are more complex because we must recover both the visu-
alization itself with its configuration and its transformation relative
to real-world objects. In the field of augmented reality, the term
Persistence is used to describe the restoration of 3D scenes when
revisited [27]. For data visualization tasks, we propose the term
Persistence and Continuity to describe the seamless restoration ex-
perience of the data visualization process and analysis in augmented
reality.

4.1 Storage and Distribution
First, the key difference between web-based data visualization and
AR-based data visualization is that the latter is located in a virtual
3D space, and virtual objects may have connections to real-world
objects, which can lead to problems when creating the visualization
environment. Formally storing the connections between the real
world and virtual objects and providing an entrance to access them
is very important for AR-based data visualization.

We follow these steps to create an AR environment for data vi-
sualization to determine what information we must serialize. First,
we must provide an entrance to access the AR environment. We
can provide a QR code with the JSON specification(or a URL) near
an object to prompt the user to access the iARVis AR environment.
Second, we must determine the 3D transformation of visualiza-
tion widgets. We have discussed several ways to predefine the 3D
transformation of a visualization widget in AR (Sect. 3.3). We can

a b c

d e f

g h i

j k l

Figure 4: a) Display a visualization widget near an artwork. b) A timeline chart showing the historical provenance of the artwork. Hovering or
tapping near a certain timeline bar can toggle the tooltip that describes more detailed information. c) A specification table about the artwork.
d) Digital presence: A visualization widget can be expanded to the 2D screen space to improve accessibility. e) Open a new visualization
widget about the author of the artwork after tapping a super-hyperlink. f) A grid of all the artworks of the author. g) Embed a YouTube video to
introduce the author. h) Display a visualization widget near a MacBook Pro. i) A timeline chart showing the evolution of the MacBook Pro
product line. j) A bar chart comparing the performance of the MacBook Pro and other laptops. k) A list of technical reviews of the MacBook
Pro. l) Open a new visualization widget about the new Apple Silicon chip after tapping a super-hyperlink.

simply specify a relative transformation of the visualization widget
to the target with an anchor point to determine the 3D transformation
in the real world and store the information in the JSON specification.
Third, we must declare the user interface and interaction of visu-
alization widgets, which has been discussed in Sect. 3.2. Because
the design grammar itself is based on JSON, we can simply store
the declaring detail in a JSON field (Fig. 2c, Fig. 2d).

We can easily distribute the JSON specification to a server and
access them through a URL, or generate an iARVis:// URL with
JSON specification encoded. Distributing the configuration to the

server can make the data visualization experience dynamic, for
example, we can update data over time, correct invalid data, or even
change the entire visualization environment.

4.2 Persistence and Continuity

When reviewing the literature on augmented reality with data vi-
sualization processing and analysis, we noticed a rarely noted but
important problem: every time we enter the augmented reality envi-
ronment, we need to rearrange all the scene content, and the previous
working environment has been lost [11, 50]. For example, we need

to reposition the visualization widget near the object it is related to,
alter the visual encoding of the chart, etc.

We define persistence and continuity as: if the user leaves
the AR environment and revisits it later, the environment will be
restored to the previous state, including positioned visualization
widgets with their transformation and visual configuration. We’ve
carefully analyzed the situations that may be encountered every time
we re-enter the AR environment and propose possible solutions of
different granularities to achieve persistence and continuity. By
leveraging the storage and persistence abilities, iARVis supports
saving the visualization environment and sharing with other users.

4.2.1 World map
ARKit [4] provides a way to serialize all the AR information into
a single ARWorldMap, which contains all feature points, detected
planes, anchors, etc., with a snapshot of the camera view from the
time that data were saved. Besides ARWorldMap, we also need
to persist widgets’ transformations, visual configurations, and their
binding relationships with anchors. Putting all these together, we can
construct a world map, which contains all the necessary information
to reconstruct the visualization environment.

4.2.2 Relocation
With the ARWorldMap, ARKit could attempt to relocalize to the
new world map — that is, to reconcile the received spatial-mapping
information with what it senses of the local environment. In general,
this relocation procedure is using all feature points information
stored in the ARWorldMap to match the physical environment and
find out the relationships between old and new feature points. Once
the relocation is done, the coordinate system is aligned with the
coordinate system in the world map so that all previous anchors in
the augmented reality space could be re-positioned.

4.2.3 Re-position and re-configure widgets
Once the coordinate system is re-aligned, we can further re-position
the anchors saved in the ARWorldMap. An anchor (ARAnchor [3])
is an object that specifies the position and orientation of a feature
point in the augmented reality space. We use a customized anchor
to store: 1) the JSON specification of the content of the widget, 2)
the transformation of the widget, 3) the visual configuration of the
widget. We can restore the widgets from anchors as soon as the
world map is reloaded.

4.2.4 Different levels of persistence and continuity
We provide different levels of persistence and continuity to achieve
the maximum degree of usability according to the stability of the
physical environment. Table 2 shows how widget transformation
and configuration can be restored using each level.

Level Physical
Environment

Widget
Transformation

Widget
Configuration

Level 1 Stable Directly Directly
Level 2 Dynamic Tracking Directly
Level 3 Dynamic Dependent Directly

Table 2: Different levels of persistence and continuity
Level 1, the most rigorous but the easiest to use level, could be

used when the physical environment is stable, which means we can
directly restore all information from the world map. Level 2, which
is enabled by default, provides the most flexibility for most use cases
by trying to track all targets again. Level 3 is used when the widget
does not have a tracking target, in that case, we can bind the widget
to the nearest anchor. All levels can be used concurrently as each
widget can use different levels of persistence and continuity for the
maximum degree of usability. For example, a portrait on the wall
may never move, but the price tag placed nearby could be moved

around. We can use the first level to store the widget related to the
portrait itself and use the second level to store the widget related to
the price tag.

We achieve the maximum possibility of persistence and continuity
through these levels to help users gain the seamless and continuous
experience of AR-based information and data visualization.

5 EXAMPLE APPLICATIONS

To evaluate iARVis and its practicality and extensibility, we build
some typical application examples. Our examples focus on 1) basic
usage of iARVis for building the visualization environment using our
declarative grammar (Sect. 5.1), 2) augmenting static visualization
using iARVis to enhance the visualization with interactivity and
more information (Sect. 5.2), 3) extending the current declarative
language to introduce unsupported visualization techniques, such
as SPLOM (Sect. 5.3). A typical iARVis application uses QR Code
scanning to open the visualization environment, we can also consider
other ways to open the visualization environment, such as image
recognition, object recognition, and NFC.

5.1 Construction of the Visualization Environment
The most important advantage of iARVis is that it provides a simple
declarative syntax to build augmented reality-based visualization
environments with ease. We will now present some example appli-
cations built with iARVis.

5.1.1 Build a visualization environment near a static image
Scenario description We consider a typical exhibition scenario
where paintings by different authors are displayed in a gallery and
visitors can observe the painting they are interested in, learn about
the history of the painting, and learn about the artist. Due to site size
and cost constraints, not all paintings can show sufficient information.
For example, the introduction of the author may not be repeatedly
displayed if their paintings are placed in different locations, and
there is not sufficient space to display the provenance and historical
price information of the painting.

Example Using iARVis, we can easily build a visualization en-
vironment that displays additional information near the painting to
eliminate spatial limitations and provide interactivity. For example,
we can place a widget that contains the introduction to the painting
with text, audio, video, and a table near the painting using image
targeting, as shown in Fig. 4. We list the basic specification details
of the artwork, such as the medium, dimension and culture type,
in a table, as shown in Fig. 4c. We can use a timeline chart and a
line chart to visualize the historical provenance (Fig. 4b) and price
(Fig. 4d) of the painting. We provide some interactions such as
hovering and tapping to provide detailed information in a tooltip
about the provenance and price of the painting, which can also be
displayed in 2D screen space for better readability, as shown in
Fig. 4b and Fig. 4d. We can also expand the visualization widget to
the 2D screen space to provide better accessibility for the user, as
shown in Fig. 4d. Since we fetch all the design information from the
JSON specification from a URL, we can easily update the visualiza-
tion environment, such as the provenance and price of the painting,
without changing the client code.

By tapping a hyperlink targeting another visualization widget that
the designer provides, we can also open an additional visualization
widget that displays information about the painter, such as the in-
troduction to the painter with text and video (Fig. 4e, Fig. 4g), a
visualization chart about the painter’s life and career (top of Fig. 4e),
introduction to the progression of the painter’s artwork, and a grid
displaying the painter’s paintings (Fig. 4f).

5.1.2 Build a visualization environment near an object
Scenario description We now consider a store selling digital prod-
ucts such as phones, tablets, and laptops, where customers can read

a b c

Figure 5: a) Use the small multiple technique to visualize the evolution of the baby name in the US. Due to the spatial limitation, we can use
iARVis to display the visualization. b) We can open a web page through a hyperlink, to show detailed weather information. c) We can open a
detailed scatter plot view by tapping one of the SPLOM cells. We can select a range of data points to know the data distribution.

a brief description placed near the product. Due to spatial and tem-
poral limitations, information cannot be fully displayed and updated
in real time.

Example With the object targeting capability of iARVis, we can
easily build a visualization environment that displays additional
information near the product object. We should pre-scan the target
object using Reality Composer [45] to a .arobject file, which is
used by ARKit to track the object or use a QR Code as the tracking
target. As shown in Fig. 4, we build a visualization environment
that introduces the latest 16-inch MacBook Pro. In addition, a
specification table (Fig. 4h) provides basic information such as the
color options, memory and storage options, size and weight, display
and camera, etc. We also use a timeline chart to visualize the history
of the MacBook Pro family (Fig. 4i), some bar charts and line charts
to visualize the CPU and GPU performance of the MacBook Pro
(Fig. 4j), and technical review videos from different YouTubers to
provide more information about the product (Fig. 4k).

There has been a CPU architecture transition in the MacBook Pro
family from Intel to Apple Silicon since 2020, which is shown in
the timeline chart (Fig. 4i). If the user wants to know more about
what is Apple Silicon, they can tap the highlighted Apple Silicon
text, which is a hyperlink, to open a new visualization widget that
introduces Apple Silicon, as shown in Fig. 4l.

5.1.3 Build a visualization environment near existing charts

Scenario description Visualizations require a lot of space on paper
but we typically do not have sufficient space to display all visual-
ization concurrently [15]. Researchers use techniques such as small
multiple [15] to augment existing static visualization using AR to
display all the visualizations near the original visualization.

Example With iARVis, we can easily achieve a similar effect by
placing the visualization widget near the tracked visualization. We
now consider writing an essay that tells a visualization story about
the evolution of baby names in the US from 1880 to 2015. The
publisher requires the essay to be less or equal to four A4 pages long,
which cannot display all relevant visualizations. We thus provide a
QR Code that points to an iARVis specification with a hint. When
the user scans the QR Code, iARVis will load the specification and
build the visualization environment, showing a matrix of area charts
using the small multiples technique, as shown in Fig. 5a.

5.2 Augment Static Visualization

Besides building the visualization environment easily, iARVis can
also enhance existing static visualization to provide more informa-
tion and interactivity.

5.2.1 Augment static visualization by overlaying

Scenario description The static limitation of paper visualizations
prevents the possibilities of various visualization techniques, a sim-

ple example is that when visualizing the weather status of an area
on a map, we can only show the weather status of a certain day.

Example With iARVis, we can only display dynamic and real-
time weather information on the map and can add interactive el-
ements to the dynamic content. For example, we can deploy an
environment specification to a server and keep it up-to-date, so that
iARVis can fetch and display the latest weather status while provid-
ing interactions such as displaying the weather details of a certain
area by tapping. As shown in Fig. 1c, we use iARVis to display the
real-time weather status of Shanghai on a district map. The user can
tap on the brief weather status card of a district to open a web page
displaying the detailed weather status of the district (Fig. 5b).

5.2.2 Augment static visualization by extending

Scenario description The static visualization chart can easily be
out of date because it is difficult to update the visualization chart
once it has been printed and distributed. For example, a bar chart
that shows the historical daily weather status of a city could be out
of date right after the weather report is published, and due to spatial
limitations, we cannot display all the historical weather statuses.

Example Using iARVis, we can easily extend the existing visu-
alization chart by displaying the continuous part to eliminate the
temporal and spatial limitations. As shown in Fig. 1d, we can extend
the original chart by putting the latest weather status on the right
side, and the previous weather status on the left side.

5.3 Extend the Declarative Grammar

The design of the declarative grammar of iARVis is highly extensible;
and we can keep adding more component supports to enhance the
visualization ability, which provides various possibilities to support
different visualization techniques.

5.3.1 Extend the grammar to support SPLOM

Scenario description The scatter plot matrix, known acronymically
as SPLOM [29], uses multiple scatter plots to determine correlations
between a series of variables. For example, we can use SPLOM to
describe the relationship between diabetes and different predictor
variables such as glucose, blood pressure, etc. However, SPLOM
takes up a lot of space; thus each scatter plot is small particularly
when it is printed on paper and the number of variables is large.

Example We can easily extend the declarative grammar to sup-
port the SPLOM technique by adding a new dedicated component
with some necessary parameters (Fig. 3b). By merely defining the
data source, field names, and the default configuration for each scat-
ter plot, we can quickly construct SPLOM visualizations without any
code. The SPLOM technique helps us easily perceive the correlation
between two factors at a glance, and we can also tap on a scatter plot
to open a new dedicated visualization widget displaying the scatter
plot with additional information. For example, the detailed widget

(16, 12288) (25, 19200) (36, 24648) (49, 37632) (64, 49152)

Data Size (Chart Count, Total Points)

0

1

2

3

4

5

C
on

st
ru

ct
io

n
T

im
e

(s
ec

o
nd

s)

Construction Time - Number of Charts (SPLOM)

(192, 12288) (300, 19200) (385, 24648) (588, 37632) (768, 49152)

Data Size (Points in Each Chart, Total Points)

0

1

2

3

4

5

Construction Time - Number of Points (SPLOM)

iPhone Xs (2018) iPad Pro 2018 iPhone 14 Pro (2022) iPad Pro 2021

Add more data
points in each

scatter plot

Keep constant
number of scttaer

plots in the
SPLOM

Test Case 2

Add more scatter
plots in the

SPLOM

Test Case 1

Keep constant
number of data
points in each

scatter plot

cba

Figure 6: Performance Evaluation: a) Performance test scenario illustrations. b) Performance test case 1. c) Performance test case 2.

displays the data distribution and a brief description of the data in
the selected range, as shown in Fig. 5c.

6 EVALUATION AND CONCLUSION

Besides example applications we implement, we also evaluate our
system with a performance evaluation and expert reviews.

6.1 Performance Evaluation
iARVis aims at quick development and prototype validation, scala-
bility is not an explicit design goal. This part reports on performance
measures of the current implementation.

We use iARVis to build environments in different scales of data
and view hierarchy, and observe the construction time of the en-
vironment with the frame rate of the scene, on devices produced
from 2018 to 2022. The result indicates that the construction time
of iARVis is highly related to the scale of data in charts, but not
influenced much by the complexity of the view hierarchy. The frame
rate of iARVis is stable at 60 FPS after the construction process.

Based on the observation, we decide to test the construction
performance further using the SPLOM example (Sect. 5.3.1) with
different scales of data. We test the performance in two ways: 1)
increase the number of scatter plots in the SPLOM from 16 to 64,
and each scatter plot has 768 data points (Fig. 6b, Fig. 6a). 2)
increase the number of data points in each scatter plot from 192 to
768, and the number of scatter plots is 64 (Fig. 6c, Fig. 6a). The
total number of data points ranges from 12,288 to 49,152 in both
test cases. We run each test case 5 times and calculate the average
construction time for each device.

The results in two test cases reveal that the construction time of
iARVis is highly related to the total number of points, no matter how
many scatter plots are involved. All devices perform well if the total
number of points is less than 10,000, which could accommodate
most visualization scenarios in daily life. iPad Pro 2021 and iPhone
14 Pro can even construct the scene containing a SPLOM widget of
about 50,000 points in less than 2 seconds, which could contain 64
scatter plots with 768 data points in each plot.

6.2 Expert Reviews
We invited 5 experts (visualization researchers with varying levels
of experience with visualization toolkits such as Vega-Lite and d3.js
from our institute, E1 - E5) to evaluate the proposed concepts and
implementation. Overall, the experts were highly interested and
positive about how to create an AR-based information and data visu-
alization environment with simple JSON specifications. The experts
mentioned that the 2 levels of creation (Sect. 3.6.1) can give both
novice and expert users the ability to create visualization environ-
ments (E1, E2, E4), and the hot-reload (Sect. 3.6.2) can help users to
quickly iterate and validate their ideas (E1 - E5). All experts agreed
that the automatic positioning of visualization widgets is very useful,

which allows users directly step into the analysis process (E1 - E5).
A few of them also positively mentioned that the ability to change
the digital presence can make visualization widgets more accessible,
and they prefer to bring the widget to the 2D space when interacting
with charts (E3, E4). The sharing experience is appreciated by most
experts (E1, E2, E4, E5), who mentioned that the sharing ability
works well with the persistence and continuity (Sect. 4) feature,
giving users the ability to save the current working environment
and share with others. And the persistence and continuity feature is
important for creating a seamless analysis experience.

In addition to the design and implementation of iARVis, the
experts also evaluated the example applications we created. They
mentioned that examples of visualizing information about artworks
(Sect. 5.1.1) and MacBook Pro (Sect. 5.1.2) could be typical daily
life scenarios of AR-based information visualization (E2, E3, E5).
The small multiple (Sect. 5.1.3) and SPLOM (Sect. 5.3.1) examples
demonstrate the potential of iARVis to support complex visualization
techniques and the ability to eliminate spatial constraints (E1, E3,
E4). Examples of augmenting static data visualizations indicate
another possibility of iARVis, providing dynamic and interactive
content to the static visualization in some special scenarios (E2, E4).

Experts also addressed some critical points. The first point is
the limitation of the field of view, which is a limitation of mobile
AR devices (E1, E3). The second one is the fatigue when holding
an iPad for a longer period, which is a common problem of both
mobile and HMD AR devices (E3, E4). Also, experts requested the
possibility of synchronizing the real-time collaboration for multiple
sessions and 3D data visualization chart support (E2, E4).

6.3 Conclusion

With ARKit, iARVis makes prototyping mobile AR-based informa-
tion and data visualization easy and quick. By providing declarative
grammar and a collection of components, iARVis can generate code-
free complex visualization environments with advanced features
such as hot-reload, automatic positioning, and persistence and conti-
nuity, as well as fluent and seamless user experiences.

We believe that iARVis is an important step towards enabling
general users to explore AR-based visualization in their daily lives,
and we believe that the proposed concept can be extended in the
future to support complex visualization techniques and advanced
features, such as real-time collaboration and 3D data visualization.

ACKNOWLEDGMENTS

This work was supported by the NSFC under Grant 62072183, the
Shanghai Committee of Science and Technology, China (Grant No.
22511104600), and NSSFC under Grant 22ZD05. Changbo Wang
and Chenhui Li are the corresponding authors.

REFERENCES

[1] J. Ahrens, B. Geveci, and C. Law. Paraview: An end-user tool for large
data visualization. The visualization handbook, 717(8), 2005.

[2] I. J. Akpan and M. Shanker. A comparative evaluation of the effec-
tiveness of virtual reality, 3d visualization and 2d visual interactive
simulation: an exploratory meta-analysis. Simulation, 95(2):145–170,
2019.

[3] ARAnchor. https://developer.apple.com/documentation/

arkit/aranchor. Accessed: 2022-07-22.
[4] ARKit. https://developer.apple.com/augmented-reality/
arkit/. Accessed: 2022-07-17.

[5] B. Bach, R. Sicat, J. Beyer, M. Cordeil, and H. Pfister. The hologram
in my hand: How effective is interactive exploration of 3d visualiza-
tions in immersive tangible augmented reality? IEEE transactions on
visualization and computer graphics, 24(1):457–467, 2017.

[6] B. Bach, R. Sicat, H. Pfister, and A. Quigley. Drawing into the ar-
canvas: Designing embedded visualizations for augmented reality. In
Workshop on Immersive Analytics, IEEE Vis, 2017.

[7] J. Bertin. Semiology of graphics. University of Wisconsin press, 1983.
[8] M. Bostock and J. Heer. Protovis: A graphical toolkit for visualization.

IEEE transactions on visualization and computer graphics, 15(6):1121–
1128, 2009.

[9] M. Bostock, V. Ogievetsky, and J. Heer. D3 data-driven docu-
ments. IEEE transactions on visualization and computer graphics,
17(12):2301–2309, 2011.

[10] D. Bowman, C. North, J. J. Chen, N. Polys, P. Pyla, and U. Yilmaz.
Information-rich virtual environments: theory, tools, and research
agenda. In VRST ’03. doi: 10.1145/1008653.1008669

[11] P. W. Butcher, N. W. John, and P. D. Ritsos. Vria: A web-based frame-
work for creating immersive analytics experiences. IEEE Transactions
on visualization and computer graphics, 27(7):3213–3225, 2020.

[12] S. Butscher, S. Hubenschmid, J. Müller, J. Fuchs, and H. Reiterer. Clus-
ters, trends, and outliers: How immersive technologies can facilitate
the collaborative analysis of multidimensional data. In Proceedings of
the 2018 CHI Conference on Human Factors in Computing Systems,
CHI ’18, p. 1–12. Association for Computing Machinery, New York,
NY, USA, 2018. doi: 10.1145/3173574.3173664

[13] T. Chandler, M. Cordeil, T. Czauderna, T. Dwyer, J. Glowacki,
C. Goncu, M. Klapperstueck, K. Klein, K. Marriott, F. Schreiber, and
E. Wilson. Immersive analytics. In 2015 Big Data Visual Analytics
(BDVA), pp. 1–8, 2015. doi: 10.1109/BDVA.2015.7314296

[14] Z. Chen, Y. Su, Y. Wang, Q. Wang, H. Qu, and Y. Wu. Marvist:
Authoring glyph-based visualization in mobile augmented reality. IEEE
transactions on visualization and computer graphics, 26(8):2645–2658,
2019.

[15] Z. Chen, W. Tong, Q. Wang, B. Bach, and H. Qu. Augmenting static
visualizations with PapARVis designer. In Proceedings of the 2020
CHI Conference on Human Factors in Computing Systems, pp. 1–12.
ACM. doi: 10.1145/3313831.3376436

[16] CommonMark specification. https://commonmark.org. Accessed:
2022-07-09.

[17] M. Cordeil, A. Cunningham, B. Bach, C. Hurter, B. H. Thomas, K. Mar-
riott, and T. Dwyer. Iatk: An immersive analytics toolkit. In 2019
IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp.
200–209. IEEE, 2019.

[18] M. Cordeil, A. Cunningham, T. Dwyer, B. H. Thomas, and K. Marriott.
Imaxes: Immersive axes as embodied affordances for interactive mul-
tivariate data visualisation. In Proceedings of the 30th Annual ACM
Symposium on User Interface Software and Technology, UIST ’17, p.
71–83. Association for Computing Machinery, New York, NY, USA,
2017. doi: 10.1145/3126594.3126613

[19] C. Cruz-Neira, D. J. Sandin, and T. A. DeFanti. Surround-screen
projection-based virtual reality: the design and implementation of the
cave. In Proceedings of the 20th annual conference on Computer
graphics and interactive techniques, pp. 135–142, 1993.

[20] C. Donalek, S. G. Djorgovski, A. Cioc, A. Wang, J. Zhang, E. Lawler,
S. Yeh, A. Mahabal, M. Graham, A. Drake, et al. Immersive and
collaborative data visualization using virtual reality platforms. In 2014
IEEE International Conference on Big Data (Big Data), pp. 609–614.

IEEE, 2014.
[21] N. ElSayed, B. Thomas, K. Marriott, J. Piantadosi, and R. Smith.

Situated analytics. In 2015 Big Data Visual Analytics (BDVA), pp. 1–8.
IEEE, 2015.

[22] U. Engelke, H. Hutson, H. Nguyen, and P. de Souza. Melissar: Towards
augmented visual analytics of honey bee behaviour. In Proceedings of
the 2016 CHI Conference Extended Abstracts on Human Factors in
Computing Systems, pp. 2057–2063, 2016.

[23] ARKit Face Tracking. https://developer.apple.com/

documentation/arkit/content_anchors/tracking_and_

visualizing_faces. Accessed: 2022-09-18.
[24] J.-D. Fekete. The infovis toolkit. In IEEE Symposium on Information

Visualization, pp. 167–174, 2004. doi: 10.1109/INFVIS.2004.64
[25] P. Fleck, A. Sousa Calepso, S. Hubenschmid, M. Sedlmair, and

D. Schmalstieg. Ragrug: A toolkit for situated analytics. IEEE Trans-
actions on Visualization and Computer Graphics, pp. 1–1, 2022. doi:
10.1109/TVCG.2022.3157058

[26] L. Gallo, A. P. Placitelli, and M. Ciampi. Controller-free exploration
of medical image data: Experiencing the kinect. In 2011 24th inter-
national symposium on computer-based medical systems (CBMS), pp.
1–6. IEEE, 2011.

[27] A. Guo, I. Canberk, H. Murphy, A. Monroy-Hernández, and R. Vaish.
Blocks: Collaborative and persistent augmented reality experiences.
Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., 3(3), sep
2019. doi: 10.1145/3351241

[28] F. Han, Y. Cheng, M. Strachan, and X. Ma. Hybrid paper-digital
interfaces: A systematic literature review. In Designing Interactive Sys-
tems Conference 2021, pp. 1087–1100. ACM. doi: 10.1145/3461778.
3462059

[29] J. Hartigan. Clustering Algorithms. A Wiley publication in applied
statistics. Wiley, 1975.

[30] J. Heer, S. K. Card, and J. A. Landay. Prefuse: a toolkit for interactive
information visualization. In Proceedings of the SIGCHI conference
on Human factors in computing systems, pp. 421–430, 2005.

[31] Y. Holtz. The issue with 3d in data visualization. https://www.
data-to-viz.com/caveat/3d.html. Accessed: 2022-09-14.

[32] S. Hubenschmid, J. Zagermann, S. Butscher, and H. Reiterer. Stream:
Exploring the combination of spatially-aware tablets with augmented
reality head-mounted displays for immersive analytics. In Proceedings
of the 2021 CHI Conference on Human Factors in Computing Systems,
CHI ’21. Association for Computing Machinery, New York, NY, USA,
2021. doi: 10.1145/3411764.3445298

[33] C. Hurter, N. H. Riche, S. M. Drucker, M. Cordeil, R. Alligier, and
R. Vuillemot. Fiberclay: Sculpting three dimensional trajectories to
reveal structural insights. IEEE transactions on visualization and
computer graphics, 25(1):704–714, 2018.

[34] ARKit Image Tracking. https://developer.apple.com/

documentation/arkit/content_anchors/tracking_and_

altering_images. Accessed: 2022-07-20.
[35] P. Issartel, F. Guéniat, and M. Ammi. A portable interface for tangi-

ble exploration of volumetric data. In Proceedings of the 20th ACM
Symposium on Virtual Reality Software and Technology, pp. 209–210,
2014.

[36] V. Juřı́k, L. Herman, D. Snopkova, A. J. Galang, Z. Stachoň, J. Chmelı́k,
P. Kubı́ček, and Č. Šašinka. The 3d hype: Evaluating the poten-
tial of real 3d visualization in geo-related applications. Plos one,
15(5):e0233353, 2020.

[37] O.-H. Kwon, C. Muelder, K. Lee, and K.-L. Ma. A study of layout,
rendering, and interaction methods for immersive graph visualization.
IEEE transactions on visualization and computer graphics, 22(7):1802–
1815, 2016.

[38] R. Langner, M. Satkowski, W. Büschel, and R. Dachselt. MARVIS:
Combining mobile devices and augmented reality for visual data analy-
sis. In Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems, pp. 1–17. ACM. doi: 10.1145/3411764.3445593

[39] B. MacIntyre, M. Gandy, S. Dow, and J. D. Bolter. Dart: A toolkit for
rapid design exploration of augmented reality experiences. ACM Trans.
Graph., 24(3):932, jul 2005. doi: 10.1145/1073204.1073288

[40] A. McNutt. No grammar to rule them all: A survey of json-style dsls
for visualization, 2022. doi: 10.48550/ARXIV.2207.07998

https://developer.apple.com/documentation/arkit/aranchor
https://developer.apple.com/documentation/arkit/aranchor
https://developer.apple.com/augmented-reality/arkit/
https://developer.apple.com/augmented-reality/arkit/
https://commonmark.org
https://developer.apple.com/documentation/arkit/content_anchors/tracking_and_visualizing_faces
https://developer.apple.com/documentation/arkit/content_anchors/tracking_and_visualizing_faces
https://developer.apple.com/documentation/arkit/content_anchors/tracking_and_visualizing_faces
https://www.data-to-viz.com/caveat/3d.html
https://www.data-to-viz.com/caveat/3d.html
https://developer.apple.com/documentation/arkit/content_anchors/tracking_and_altering_images
https://developer.apple.com/documentation/arkit/content_anchors/tracking_and_altering_images
https://developer.apple.com/documentation/arkit/content_anchors/tracking_and_altering_images

[41] ARKit Object Tracking. https://developer.apple.com/

documentation/arkit/content_anchors/scanning_and_

detecting_3d_objects. Accessed: 2022-07-20.
[42] N. Polys and D. Bowman. Design and display of enhancing informa-

tion in desktop information-rich virtual environments: challenges and
techniques. 8(1). doi: 10.1007/s10055-004-0134-0

[43] N. F. Polys, S. Kim, and D. A. Bowman. Effects of information layout,
screen size, and field of view on user performance in information-rich
virtual environments. In Proceedings of the ACM symposium on Virtual
reality software and technology, VRST ’05, pp. 46–55. Association for
Computing Machinery. doi: 10.1145/1101616.1101626

[44] D. Raja, D. Bowman, J. Lucas, and C. North. Exploring the benefits of
immersion in abstract information visualization. In Proc. Immersive
Projection Technology Workshop, vol. 61, p. 69, 2004.

[45] Reality Composer app. https://apps.apple.com/us/app/

reality-composer/id1462358802. Accessed: 2022-07-20.
[46] G. C. S. Ruppert, L. O. Reis, P. H. J. Amorim, T. F. de Moraes, and

J. V. L. da Silva. Touchless gesture user interface for interactive image
visualization in urological surgery. World journal of urology, 30(5):687–
691, 2012.

[47] K. Satriadi, A. Cunningham, B. Thomas, A. Drogemuller, A. Odi,
N. Patel, C. Aston, and R. Smith. Augmented scale models: Presenting
multivariate data around physical scale models in augmented reality.
08 2022.

[48] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-
lite: A grammar of interactive graphics. IEEE transactions on visual-
ization and computer graphics, 23(1):341–350, 2016.

[49] A. Satyanarayan, R. Russell, J. Hoffswell, and J. Heer. Reactive vega:
A streaming dataflow architecture for declarative interactive visual-
ization. IEEE Transactions on Visualization and Computer Graphics,
22(1):659–668, 2016. doi: 10.1109/TVCG.2015.2467091

[50] R. Sicat, J. Li, J. Choi, M. Cordeil, W.-K. Jeong, B. Bach, and H. Pfis-
ter. Dxr: A toolkit for building immersive data visualizations. IEEE
transactions on visualization and computer graphics, 25(1):715–725,
2018.

[51] R. Skarbez, N. F. Polys, J. T. Ogle, C. North, and D. A. Bowman. Im-
mersive analytics: Theory and research agenda. Frontiers in Robotics
and AI, 6:82, 2019.

[52] The Swift Programming Language. https://swift.org/. Accessed:
2022-09-18.

[53] R. M. Taylor, T. C. Hudson, A. Seeger, H. Weber, J. Juliano, and
A. T. Helser. Vrpn: A device-independent, network-transparent vr
peripheral system. In Proceedings of the ACM Symposium on Virtual
Reality Software and Technology, VRST ’01, p. 55–61. Association
for Computing Machinery, New York, NY, USA, 2001. doi: 10.1145/
505008.505019

[54] B. H. Thomas, G. F. Welch, P. Dragicevic, N. Elmqvist, P. Irani,
Y. Jansen, D. Schmalstieg, A. Tabard, N. A. M. ElSayed, R. T. Smith,
and W. Willett. Situated Analytics, pp. 185–220. Springer International
Publishing, Cham, 2018. doi: 10.1007/978-3-030-01388-2 7

[55] W. Usher, P. Klacansky, F. Federer, P.-T. Bremer, A. Knoll, J. Yarch,
A. Angelucci, and V. Pascucci. A virtual reality visualization tool for
neuron tracing. IEEE Transactions on Visualization and Computer
Graphics, 24(1):994–1003, 2018. doi: 10.1109/TVCG.2017.2744079

[56] Z. Wen, W. Zeng, L. Weng, Y. Liu, M. Xu, and W. Chen. Effects
of view layout on situated analytics for multiple-view representations
in immersive visualization. IEEE Transactions on Visualization and
Computer Graphics, 29(1):440–450, 2023. doi: 10.1109/TVCG.2022.
3209475

[57] C. Wilke. Fundamentals of Data Visualization: A Primer on Making
Informative and Compelling Figures. O’Reilly Media, 2019.

[58] W. Willett, Y. Jansen, and P. Dragicevic. Embedded data representa-
tions. IEEE Transactions on Visualization and Computer Graphics,
23(1):461–470, 2017. doi: 10.1109/TVCG.2016.2598608

[59] Y. Yang, T. Dwyer, B. Jenny, K. Marriott, M. Cordeil, and H. Chen.
Origin-destination flow maps in immersive environments. IEEE trans-
actions on visualization and computer graphics, 25(1):693–703, 2018.

[60] Y. Yang, B. Jenny, T. Dwyer, K. Marriott, H. Chen, and M. Cordeil.
Maps and globes in virtual reality. In Computer Graphics Forum,
vol. 37, pp. 427–438. Wiley Online Library, 2018.

[61] S. Zhang, C. Demiralp, D. F. Keefe, M. DaSilva, D. H. Laidlaw, B. D.
Greenberg, P. J. Basser, C. Pierpaoli, E. A. Chiocca, and T. S. Deis-
boeck. An immersive virtual environment for dt-mri volume visual-
ization applications: a case study. In Proceedings Visualization, 2001.
VIS’01., pp. 437–584. Ieee, 2001.

[62] M. Zhao, Y. Su, J. Zhao, S. Chen, and H. Qu. Mobile situated analytics
of ego-centric network data. In SIGGRAPH Asia 2017 Symposium on
Visualization, pp. 1–8, 2017.

https://developer.apple.com/documentation/arkit/content_anchors/scanning_and_detecting_3d_objects
https://developer.apple.com/documentation/arkit/content_anchors/scanning_and_detecting_3d_objects
https://developer.apple.com/documentation/arkit/content_anchors/scanning_and_detecting_3d_objects
https://apps.apple.com/us/app/reality-composer/id1462358802
https://apps.apple.com/us/app/reality-composer/id1462358802
https://swift.org/

	Introduction
	Related Work
	Applications of Visualization in AR / VR
	Authoring Toolkits for Visualization in AR / VR

	Design
	Overview
	Visualization Widget Design
	Visual Element Components
	Layout Components

	Visualization Widget Automatic Positioning
	Digital Presence
	User Preferences
	Authoring Efficiency
	Two Levels of Creation for Users in Different Levels
	Hot-reload

	Persistence and Continuity
	Storage and Distribution
	Persistence and Continuity
	World map
	Relocation
	Re-position and re-configure widgets
	Different levels of persistence and continuity

	Example Applications
	Construction of the Visualization Environment
	Build a visualization environment near a static image
	Build a visualization environment near an object
	Build a visualization environment near existing charts

	Augment Static Visualization
	Augment static visualization by overlaying
	Augment static visualization by extending

	Extend the Declarative Grammar
	Extend the grammar to support SPLOM

	Evaluation and Conclusion
	Performance Evaluation
	Expert Reviews
	Conclusion

